Высушенные распылением микрочастицы как терапевтические носители
Изобретение относится к медицине. Микрочастицы из водорастворимого материала, которые являются гладкими и сферическими, и, по меньшей мере, 90% которых имеют среднемассовый размер частиц 1 - 10 мкм, которые несут терапевтический или диагностический агент, или используют такой агент в качестве водорастворимого материала, могут успешно применяться в ингаляторах, распыляющих сухой порошок, для доставки указанного агента. Предлагаемые частицы осуществляют более эффективную доставку лекарственных и диагностических средств в альвеолы. 5 с. и 14 з.п. ф-лы, 11 табл.
Изобретение относится к высушенным распылением микрочастицам и их применению как терапевтических носителей. Конкретнее, настоящее изобретение относится к средствам доставки диагностических и терапевтических агентов и продуктов биотехнологии, включая лекарственные средства, полученные с помощью технологии рДНК.
Наиболее распространенные пути введения терапевтических агентов, пероральный или желудочно-кишечный, в значительной степени неприменимы к пептидам и белкам, полученным с помощью технологии рДНК. Чувствительность нормальных пептидов и белков крови к кислой/протеолитической среде кишечника в значительной степени препятствует этому пути введения. Логичным средством введения является внутривенное вливание, но это представляет определенные трудности, связанные с плохим соблюдением пациентом режима и схемы лечения при длительном введении и, очень часто, с быстрым клиренсом после первого же прохождения через печень, что выражается в коротком периоде в/в жизни. Недавно изучалась возможность доставки путем переноса через слизистые оболочки. В то время, как назальная доставка широко изучалась, возможная доставка пептидов через легочные пути остается в значительной степени не исследованной. Альвеолярные клетки по своей природе являются эффективным барьером. Однако даже проведение материала в район альвеол представляет значительное препятствие для этого способа введения. Существует оптимальный размер частиц, который позволяет им достичь самых нижних отделов легочных путей, т.е. аэродинамический диаметр < 5 мкм. Частицы, превышающие этот размер, задерживаются в верхних отделах дыхательных путей так, что в стандартных коммерческих суспензионных препаратах только 10 - 30% частиц, нормально полидиспергированных суспензией, достигают нижних отделов дыхательных путей. Современные способы аэрозолированных лекарств для ингаляции включают распыление, дозирующие ингаляторы и системы с сухим порошком. Распыление водных растворов требует больших объемов лекарств и применения громоздких и непереносных устройств. Наиболее распространенным способом введения лекарств в легкие является использование устройств с летучими пропеллентами, которые обычно называют дозирующими ингаляторами. Их основным конструкционным признаком является раствор пропеллента, обычно CFC 11, 12 или 114, содержащий растворенное лекарство или суспензию лекарства в емкости, находящейся под давлением. Дозирование осуществляется путем нажатия на исполнительный механизм, который высвобождает пропеллентный аэрозоль лекарственной суспензии или раствора, который доставляется в дыхательные пути. Во время прохождения через легкие пропеллент испаряется, образуя микроскопические осадки из раствора или свободные частицы из суспензии. Это дозирование легко воспроизводимо и дешево, однако растущее загрязнение окружающей среды вынуждает сокращать использование CFC. Более того, использование растворителей CFC остается в значительной степени несовместимым со многими современными лекарствами, полученными средствами биотехнологии, в силу их склонности к денатурации и низкой стабильности. Одновременно, существует тенденция к использованию устройств с сухим порошком, в которых применяются сухие порошки лекарств, обычно в смеси с наполнителями, такими как лактоза или глюкоза, что облегчает аэрозолизацию и дисперсию частиц лекарства. Энергию для дезагрегации часто обеспечивает дыхание или вдыхание воздуха через устройство. В настоящее время лекарства измельчают для уменьшения размера частиц. Этот подход неприменим для продуктов, полученных средствами биотехнологии. В целом, продукты, полученные средствами биотехнологии, доступны в малых количествах и, более того, они чувствительны к методикам, применяемым в настоящее время для сушки и измельчения, предшествующих смешиванию с наполнителем. Далее, особенно трудно изготавливать смеси лекарства и наполнителя достаточно текучими, чтобы они текли и дозировались воспроизводимым образом в современных многодозовых ингаляторах, таких как Turbohaler (Astra) и Diskhaler (Glaxo). Исследования показали, что вопреки ожиданиям, высушенные распылением (сферические) микрочастицы сальбутамола, обладали силами когезии и адгезии большей величины, чем частицы измельченного лекарства такого же размера. Фотографии высушенного распылением материала, полученные с помощью электронного микроскопа, показали, что эти частицы имеют выщербленную, шероховатую поверхность. Haghpanah et al. в 1994 году на Британской фармацевтической конференции докладывали о получении высушенных распылением микрочастиц альбумина с инкорпорированным сальбутамолом, которые имели размеры, подходящие для респираторной доставки лекарства, т.е. 1 - 5 мкм. Целью являлось инкапсулирование сальбутамола для медленного его высвобождения. Из этого не становится очевидным, что продукт состоит из в значительной степени однородных сферических или гладких микрочастиц, имеющих характеристики текучести, удовлетворительные для использования в многодозовых ингаляторах с сухим порошком. Диагностические агенты, включающие полые микрокапсулы, используются для усиления изображения при ультразвуковом исследовании. Например, EP-A-458745 (Sintetica) раскрывает способ изготовления наполненных воздухом или газом микробаллонов путем полимеризации на поверхности раздела синтетических полимеров, таких как полилактиды и полигликолиды. WO-A-9112823 (Delta) раскрывает сходный способ, применяющий альбумин. Wheatley et al. (1990) Biomaterials 11: 713-717 раскрывают ионотропную желатинизацию альгината для получения микропузырьков, диаметром свыше 30 мкм. WO-A-9109629 раскрывает липосомы для применения в качестве контрастных агентов для ультразвукового исследования. Przyborоwski et al., Eur. J. Nucl. Med. 7:71-72 (1982) раскрывают приготовление микросфер из сывороточного альбумина человека (ЧСА) с помощью сушки распылением для целей радиоактивного лечения и их последующее применение для сцинтиграфии легких. Об этих микросферах не говорилось, что они были полыми и, в результате нашего повторения этой работы получались преимущественно плохо оформленные твердые микросферы. Если частицы не полые, они не подходят для эхокардиографии. Кроме того, эти микросферы изготавливались с помощью одноэтапного процесса, который, как мы установили, не подходит для изготовления микрокапсул, пригодных для эхокардиографии; в этом процессе было необходимо удалять из микросфер неденатурированный альбумин, а также явно получались микросферы, сильно различавшиеся по размерам, что требовало дополнительного этапа просеивания. Przyborowski et al. ссылаются на два более ранних описания способов получения частиц альбумина для сцинтиграфии легких. Aldrich и Johnston (1974), Int. J. Appl. Rad. Isot., 25:15-18 раскрывают применение быстро вращающегося диска для получения частиц, диаметром 3 - 70 мкм, которые затем денатурируют в горячем масле. Масло удаляют, а частицы метят радиоактивными изотопами. Raju et al., (1978), Isotopenpraxis 14(2):57-61 использовали ту же технологию с быстро вращающимся диском, но альбумин денатурировали простым нагреванием частиц. Ни в одном из этих случаев не упоминались полые микрокапсулы, а изготовленные частицы не были удобными для эхокардиографии. EP-A-0606486 (Teijin) описывает производство порошков, в которых активный агент инкорпорирован в маленькие частицы, с носителями, состоящими из целлюлозы или производных целлюлозы. Целью являлось предотвращение прилипания частиц лекарства к желатиновым капсулам, применявшихся в дозирующем ингаляторе с сухим порошком. Страница 12 этой публикации упоминает сушку распылением "лекарства и основы" для получения частиц, из которых 80% и более имеют размер 0,5 - 10 мкм. Не дается никаких указаний на то, какие условия должны использоваться для получения такого продукта. EP-A-0611567 (Teijin), более конкретно, относится к производству порошков для ингаляций с помощью сушки распылением. Носителем является целлюлоза, выбранная в силу ее устойчивости к влажности среды. Условия, приведенные в примере 1 (этанол в качестве растворителя, 2 - 5% (вес/объем) растворенного вещества), означают, что строение поверхности не регулируется, а пример 4 сообщает о фракции, плохо проникающей в нижние дыхательные пути при вдыхании (12%), что говорит о плохих дисперсионных свойствах. Сферические частицы получают явно при высоком содержании лекарства, что указывает на зависимость строения частицы от соответственного содержания лекарства и носителя. Conte et al. (1994), Eur. J. Pharm. Biopharm. 40(4): 203 - 208 описывают сушку распылением из водного раствора с минимальным содержанием растворенного вещества 1,5%. Чтобы получить большинство частиц почти сферической формы, требуется высокое содержание лекарства. Это влечет за собой образование частиц сморщенной и складчатой структуры. Помимо этого, после суспендирования в бутаноле, чтобы облегчить анализ Coulter, является необходимой обработка ультразвуком, подразумевающая, что частицы не являются полностью сухими. Целью настоящего изобретения является создание носителя для доставки лекарственных средств и композиции, которые были бы лучше приспособлены, чем ранее известные продукты, для доставки, в частности, в альвеолы. Сущность изобретения Согласно настоящему изобретению неожиданно было обнаружено, что в микрочастицах (а также в микрокапсулах и микросферах), которые также удобны как промежуточный продукт, т.е. перед фиксированием, в случае производства содержащих воздух микрокапсул для диагностических целей, например, которые описаны в WO-A-9218164 как "промежуточные микрокапсулы", на формирующий стенку материал сушка распылением практически не влияет. Таким образом, можно изготавливать и представлять в форме сухих порошков для лечебного и диагностического применения в высокой степени однородные микрочастицы, микросферы или микрокапсулы из термолабильных материалов, таких как ферменты, пептиды и белки, например ЧСА, и другие полимеры. В противоположность ранее известному состоянию данной области, в настоящее время также обнаружено, что эффективные растворимые носители для лечебных и диагностических агентов можно изготовить путем сушки распылением, которые представляют собой гладкие сферические микрочастицы с хорошей текучестью из водорастворимого материала, например сывороточного альбумина человека (ЧСА), имеющего среднемассовый размер частиц от 1 до 10 мкм. В более общем смысле, процесс изготовления микрокапсул настоящего изобретения включает атомизацию раствора (или дисперсии) материала, формирующего стенку. Лекарственный или диагностический агент может быть атомизирован немедленно или присоединен к микрокапсулам, полученным таким способом. Альтернативно, этот материал сам может представлять активный агент. В частности, было обнаружено, что при условиях, приведенных в настоящем документе и в более общей форме, описанных Sutton et al. (1992), например с использованием подходящей комбинации более высоких концентраций растворенных веществ и более высоких соотношений потоков воздух/жидкость, чем у Haghpanah et al., и усилителей образования оболочки, можно изготавливать исключительно гладкие сферические микрочастицы из различных материалов. Сферическую природу микрочастиц можно установить не только простым определением максимального размера, т.е. с помощью методики дифракции лазерного луча, описанной Haghpanah et al. Более того, размер частиц и распределение по размерам в продукте можно контролировать в более узких пределах и с большей воспроизводимостью. Например, по анализу Coulter, 98% частиц могут быть меньше 6 мкм на численной основе, в пределах межквартильного размаха - 2 мкм, и со средним размером вариации между партиями менее 0,5 мкм. Далее, при тестировании в ингаляторе с сухим порошком на стадии разработки было достигнуто воспроизводимое дозирование, и последующая аэрозолизация при нормальных условиях потока (30 л/мин) демонстрировала отличное отделение частиц от наполнителя. Нефиксированные капсулы настоящего изобретения, полученные из неденатурированного ЧСА или другого материала, способного высушиваться распылением, имеют очень гладкую поверхность и могут производиться с относительно низким содержанием наполнителей для получения высокотекучих порошков, идеальных для использования в ингаляторах с сухим порошком. Применяя этот подход, можно производить гетерогенные микрокапсулы, состоящие из суспендированных наполнителей и активного ингредиента. Этот способ имеет то преимущество, что можно получать высокотекучий порошок активных ингредиентов, которые можно подвергать дальнейшей обработке для получения порошков, которые дозируются и образуют аэрозоль с отличной воспроизводимостью и точностью. Помимо этого, способ сушки распылением, в его современной форме, вызывает относительно мало денатурации и превращения в полимеры при производстве высокотекучего порошка. Во всех случаях размер суспензии микрокапсул может быть таким, чтобы 90% массы находилось в пределах желаемых размеров, например размеров, удобных для вдыхания, 1-5 мкм. Таким образом, по существу мы описали, как можно производить микрочастицы, которые имеют размеры преимущественно 1-5 мкм, являются гладкими и сферическими, содержат газ и состоят из неповрежденных белковых молекул и которые можно хранить и перевозить перед остальными этапами производства. Для изготовления промежуточных микрокапсул для ультразвуковых исследований мы привели те характеристики процесса и получающегося в результате порошка, которые являются существенными для производства превосходных порошков для ингаляторов, распыляющих сухой порошок (ИСП). Мы обнаружили, что множество анализов, которые разработаны для эхоконтрастных агентов, удобны для определения тех параметров частиц, которые являются полезными для используемых в ИСП порошков, а именно эхогенность и устойчивость к давлению поперечно-связанных частиц, определяющие хорошо изготовленные микрочастицы; микроскопическая оценка в DPX или растворителях, определяющая сферичность и содержание глаза в растворимых промежуточных капсулах, анализ размера частиц и распределения по размерам, а также проба на мономерный белок для определения конечного уровня фиксирования продукта. Значительное внимание необходимо уделять для контроля размеров частиц и распределения по размерам, особенно в продуктах, которые используются в терапии. Мы выбрали биологически совместимый полимер, который при поперечном связывании остается безвредным, а также выяснили, каким образом можно воспроизводимо осуществлять поперечное связывание этой молекулы. Для того чтобы добиться контролируемого связывания, мы разобщили процессы формирования микрочастиц и поперечного связывания, что не делалось в других процессах выпаривания эмульсии и растворителя. Это означает, что начальный этап процесса не повреждает материал, образующий стенку. Мы определили конкретные параметры, имеющие значение для полного формирования частиц, а также дополнительно определили более выгодные условия, при которых выход интактных частиц получается больше. Выбирается ЧСА как особенно подходящий полимер, мы также выбирали потенциальную молекулу-носитель, которая может защищать лабильные молекулы, усиливать поглощение пептидов в легких, связывать низкомолекулярные лекарства за счет естественного сродства и ковалентно модифицироваться для переноса лекарств через клеточные барьеры в системную циркуляцию и далее. При использовании для производства микрочастиц малых размеров сушки распылением, исследователи были склонны применять летучие растворители, которые вызывают быстрое сморщивание капелек. Альтернативно, исследователи использовали сырьевой раствор с низким содержанием растворенных веществ для поддержания его малой вязкости, чтобы облегчить получение капелек меньшего размера. В обоих случаях, при производстве микрочастиц способ мало влияет на конечную структуру; скорее это диктуется компонентами, которые использовали для формирования частиц. Мы предприняли обширные исследования, касающиеся того, каким образом можно изготавливать частицы из ЧСА с контролируемым размером, и применили это ко многим другим материалам, включая активные лекарства. Мы можем использовать относительно высокое содержание растворенных веществ, например, 10-30% (вес/объем), в противоположность 0.5-2%, для изготовления микрочастиц, включающих низкомолекулярный активный агент и лактозу; только низкомолекулярный активный агент; пептиды с ЧСА и модифицированные полимерные носители с активным агентом. Мы обнаружили, что способ определяет конечную структуру частицы в большей степени, чем состав растворенных веществ. Далее, мы можем использовать комбинации водных и смешивающихся с водой растворителей для улучшения структуры частиц. Таким образом, мы имели методологию, главной для которой является способ, которая дает возможность изготавливать гладкие сферические частицы с контролируемым размером, удобные для доставки в легкие. Мы обнаружили, что способ настоящего изобретения можно изменять для того, чтобы получать микросферы с желаемыми характеристиками. Так, давление, под которым белковый раствор подается на форсунку распылителя, можно варьировать, например, в пределах 1.0-10.0






20%-ный раствор стерильного апирогенного ЧСА в апирогенной воде (для инъекций) прокачивали через форсунку двухпоточного атомизатора, смонтированного на коммерческой установке для сушки распылением, описанной выше. Скорость перестальтического насоса поддерживали на уровне, приблизительно, 10 мл/мин, таким образом, чтобы при температуре воздуха при впуске 220oC, температура воздуха при выпуске сохранялась на уровне 95oC. Сжатый воздух подавался на двухпоточную распыляющую форсунку под давлением 2,0 - 6,0 бар (2,0 - 6,0

Альфа-1 антитрипсин, выделенный из сыворотки человека, высушивали распылением при условии, подобных условиям примера 1, с температурой впуска 150oC и температурой выпуска 80oC. Остальные условия сушки были те же, что в примере 1. Изготовленные растворимые микрочастицы имели средний размер 4,5 мкм. Эти микрочастицы растворяли в водной среде и анализировали на предмет удерживания структуры белка и нормальной ингибирующей трипсин активности, а затем сравнивали с оригинальными лиофилизированным исходным материалом. Анализ посредством гель-хроматографии, хроматографии с обращенной фазой и капиллярного электрофореза показал, что после сушки распылением не наблюдалось значительных структурных изменений. Анализ ингибирующей активности (таблица 2) показал, что в пределах ошибки эксперимента достигалось полностью сохранение ингибирующей активности. Пример 3
С помощью общего способа пример 1 были изготовлены микрокапсулы, состоящие из алкогольдегидрогеназы (АДГ) и лактозы (АДГ 0,1 вес.%, лактозы 99,9 вес. %). Мы установили, что для достижения максимального сохранения активности фермента требуется оптимизация этапа сушки распыления. Применялись общие условия примера 1, но изменялась температура при впуске и выпуске для получения условий, которые позволили изготавливать микрочастицы желаемого размера (4 - 5 мкм), полностью сохраняемые активность после сушки и повторного растворения в водной среде. Процент сохраненной активности по сравнению с оригинальным материалом для каждого условия сушки распылением показан в таблице 3. Микрокапсулы были гладкими и сферическими и содержали воздух, о чем свидетельствовал их внешний вид в дефенилксилоле (ДФК) при световой микроскопии. Пример 4
Для изучения влияния скорости подачи жидкого сырья на выход интактных сферических частиц была выполнена серия экспериментов при условиях, описанных в примере 1. Мы установили, что используя способность содержащих газ микрочастиц отражать ультразвук, можно определить оптимальные условия для максимального увеличения выхода интактных гладких сферических микрокапсул. Микрокапсулы, полученные после сушки распылением, фиксировали нагреванием, чтобы сделать их нерастворимыми, а затем суспендировали в воде для замера эхо-сигнала. Мы установили, что увеличение скорости подачи жидкого сырья уменьшает количество интактных микрочастиц, первоначально сформированных при сушке распылением (таблица 4). Средний размер частиц и общая устойчивость к давлению, т. е. толщина стенок, не изменялась, однако изменялась общая эхогенность, по мере возрастания скорости потока жидкости с 4 до 16 мл/мин. Мы установили, что более медленное испарение (при более высоких скоростях потока жидкости) ведет к уменьшению количества получаемых интактных сферических частиц. Это исследование проводили путем ресуспендирования фиксированных нагреванием микрочастиц при концентрации 1


Для уменьшения размеров частиц и сужения распределения по разным размерам был проведен важный эксперимент. Этот эксперимент служил целям эффективного повышения содержания газа в эхоконтактном агенте и уменьшения количества частиц, превышающих нужные размеры. Этот опыт также полезен для создания композиций, предназначенных для введения в дыхательные пути тем, что он увеличивает до максимума потенциальное количество подходящих для вдыхания частиц в диапазоне размеров 1 - 5 мкг и независимо производит больше гладких частиц, которые являются менее когезионными по сравнению с несферическими частицами такого же размера. Мы установили, что возможно уменьшение размеров частиц путем снижения содержания растворенных веществ в сырьевом растворе. Этот эффект частично опосредуется влиянием вязкости на образование капелек. Однако мы установили также, что снижение содержания растворенных веществ при тех же условиях, которые мы применяли, ведет к значительному уменьшению количества интактных частиц. В дополнительных экспериментах мы обнаружили, что инкорпорация в сырьевой раствор смешивающихся с водой летучих растворителей повышает скорость образования оболочки при сушке с сопутствующим увеличением количества интактных частиц или полых частиц (таблица 5). Оценку пустотелости микрокапсул производили с помощью определения под микроскопом количества частиц, всплывающих к поверхности покровного стекла в гемоцитометре, и сравнения его с количеством частиц, определенном подсчетом на Coulter. Пример 6
Для изготовления гладких сферических растворимых микрочастиц использовался ряд материалов. Этот ряд включает инертные материалы, такие как ЧСА, лактоза, маннитол, альгинат натрия; активные материалы, такие как

оценка следующих микрочастиц иллюстрирует ряд материалов и активных компонентов, которые можно высушивать для изготовления гладких сферических частиц:
ЧСА
казеин
гемоглобин
лактоза
АДГ/лактоза
ЧСА/пероксидаза
лактоза/сальбутамол
лактоза/будесонид
Пример 7
Лактозу и будесонид высушивали распылением при условиях, описанных в нижеприведенной таблице (таблица 6). Полученный сухой порошок смешивали с наполнителем лактозой в мешалке типа V в пропорциях, перечисленных в таблице 7. Смеси затем помещали в желатиновые капсулы и выгружали из RotahalerTM в двухступенчатый импинжер, работавший в режиме 60 л/мин. Пригодную для вдыхания фракцию рассчитывали как процентную долю, отложившуюся в нижней камере. Для получения пригодных для вдыхания фракций значительно превосходят долю таких фракций в измельченном продукте, который используется в настоящее время в этом устройстве, которая обычно находится в пределах максимум 10 - 20%. Композиции будесонид/лактоза, детализированные в примере 7, испытывались в экспериментальном питаемом самотеком многодозовом ИСП. Изучаемыми параметрами являлись изменение выбрасываемой дозы после 30 нажатий и пригодная для вдыхания фракция в четырехступенчатом импинжерном устройстве. Результаты представлены в таблице 8. Для современных устройств ИСП предварительная рекомендация фармокопеи США составляет менее 25% изменения выброшенной дозы. Очевидно, что все испытанные нами композиции удовлетворяют этим требованиям, в случаях композиций 1 и 2 эти параметры значительно меньше современных ограничений. Пример 8
Для снижения скорости растворения растворимых микрокапсул, как описано в предыдущих примерах, микрокапсулы можно покрывать жирными кислотами, такими как пальмитиновая или бегеновая кислоты. На растворимые микрокапсулы примера 1 было нанесено покрытие путем суспендирования смеси растворимых ЧСА микрокапсул и глюкозы (50 вес.%) в этаноловом растворе, содержащем 10% пальмитиновой или бегеновой кислоты. Раствор выпаривали, а полученный плотный остаток смывали, пропуская через мельницу Fritsch. Эффективность покрытия оценивали непрямым методом, выведенным из наших предыдущих ультразвуковых исследований. Ультразвуковую картинку получали с химического стакана с водой, содержащего 1

Растворимые микрокапсулы из маннитола были изготовлены, как описано в примере 1 (сырье для сушки распылением - 15%-ный водный раствор маннитола), и покрыты или пальмитиновой или бегеновой кислотой, как описано в примере 8. Образец каждого вида суспендировали в воде и измеряли его эхогенность. Через десять минут после первого анализа вновь измеряли эхогенность суспендированных образцов (таблица 10). Пример 10
Растворимые микрокапсулы с модельным активным соединением (лизин-флуоресцеин), содержавшимся в матриксе, изготавливали, чтобы сделать возможным получение "активного" соединения в форме высокотекучего сухого порошка. При растворении микрокапсул активное соединение высвобождалось в своей нативной форме. При использовании лизина в качестве модельного соединения молекулы его метили флуоресцеина изотиоцианатом (ФИТЦ), чтобы за соединением можно было наблюдать во время приготовления растворимых микрокапсул и во время последующего его высвобождения при растворении. 3 г лизина добавляли к ФИТЦ (общее количество 0,5 г) в карбонатном буфере. После инкубации при 30oC в течение часа полученный раствор анализировали на наличие аддукта ФИТЦ/лизин с помощью тонкослойной хроматографии. Последняя показала наличие стабильного аддукта ФИТЦ/лизин. Аддукт ФИТЦ/лизин перемешивали со 143 мл 25% этанолом, содержавшим 100 мг/мл ЧСА для получения сырья для сушки распылением. Условия сушки распылением, которые использовались для получения микрокапсул, подробно описаны в таблице 11. Мы обнаружили, что в отсутствии этанола лишь малая доля частиц имеет гладкую сферическую структуру. В результате процесса сушки распылением было получено 17,21 г микрокапсул, которые не растворялись при ресуспендировании образца в этаноле. Более того, не наблюдалось высвобождение аддукта ФИТЦ/лизин. Однако при добавлении к микрокапсулам, суспендированным в этаноле, 10 мл воды микрокапсулы растворились, и ФИТЦ/лизин высвободился. Анализ аддукта с помощью тонкослойной хроматографии перед инкорпорированием в микрокапсулы и после высвобождения из микрокапсул при растворении показал, что модельное соединение не претерпело изменений. Размеры растворимых микрокапсул определяли в неводной системе тиоцианата аммония и пропан-2-ола с помощью Multisizer II (Coulter Electronics). Микрокапсулы имели средние размеры 3,28

500 мг беклометазона растворяли в этаноле, добавляли к 50 мл сырьевого раствора ЧСА (10% вес./об.) и высушивали распылением при условиях, описанных в примере 10. Размеры микрокапсул, полученных этим способом, определяли в неводной системе, как подробно описано в примере 10. Микрокапсулы имели средние размеры 3,13

В то время, как, по меньшей мере, в примерах 10 и 11, любое связывание активных соединений являлось следствием природных свойств альбумина, в этом примере получают продукт после первоначального поперечного связывания активного соединения, перед сушкой распылением. К раствору метотрексата 10 мг/мл добавляли 25 мг карбодиимида (EDCI). Этот раствор перемешивали в течение 4 часов для инициирования и гарантии полной активации метотрексата. К активированному лекарству добавляли 50 мг ЧСА и перемешивали в течение 3 часов при комнатной температуре. Метотрексат химически связывался с ЧСА через аминогруппы альбумина. Этот конъюгат затем использовали как сырье для сушки распылением, как подробно описано в примере 10. Из полученных таким способом микрокапсул отбирали образцы, определяли их характеристики и анализировали на содержание лекарства. Микрокапсулы имели средние размеры 3,2

Микрокапсулы из напроксена были изготовлены, так как подробно описано в примерах 10 и 12, с использованием соотношения лекарства к ЧСА от 1 до 5. Растворимые микрокапсулы сохраняли активное соединение неводного растворителя. Более того, при растворении микрокапсул в водном растворе активное соединение оставалось связанным с альбумином, что подтверждается анализом посредством ЖХВР на длине волны 262 нм, как и ранее. Напроксен высвобождался из альбумина при расщеплении протеиназой K и эстеразой. Пример 14
Используя образцы микрокапсул, изготовленных в примерах 8-13, оценивали их поведение в ингаляторе, распыляющем сухой порошок. Воспроизводимость дозирования каждой композиции оценивали в совокупности с поведением образца при распылении с помощью микроскопической техники. Образец каждой композиции добавляли в резервуарную воронку экспериментального ингалятора, распыляющего сухой порошок (ИСП). В этом ингаляторе с сухим порошком использовали сжатый воздух для проталкивания порошка в дозирующее устройство. Это дозирующее устройство калибровали с помощью высушенной распылением лактозы. Несмотря на то, что количества, отмеряемые в дозирующее устройство, у разных образцов изменялись, как функция от их композиции, воспроизводимость дозирования для каждого образца была постоянной; средняя величина для трех доз составляла 5,0

Характеристики сухих порошковых композиций примеров 10 - 13 анализировали с помощью сдвоенного импинжера (Apparatus A для ингаляций под давлением, Британская фармокопея 1988) после выгрузки из Rotahaler (Glaxo UK), с 7 мл в ступени 1 и 30 мл в ступени 2 дистиллированной воды. Композиции доставлялись из желатиновых капсул N 3 с помощью Rotahaler, подсоединенного к сдвоенному импинжеру посредством резинового переходника. Вакуумный насос работал в режиме 60 л/мин на два 3-секундных выброса. Анализировалось то количество каждого из образцов, которое достигало уровня ступени 1 и 2 импинжера. Все образцы показали наибольшую часть отложения на ступени 2 импинжера, что указывало на оптимальный для доставки в альвеолы размер частиц. Пример 16
Было проведено сравнение дозирования и отложения фиксированных нерастворимых микрокапсул и растворимых микрокапсул, полученных, как описано в примере 10, на легких кроликов. Под наркозом новозеландским белым кроликам вводили растворимые микрокапсулы или фиксированные микрокапсулы. Дозирование осуществлялось с помощью управляемого компьютером аэрозольного ингалятора (Mumed Ltd., UK). Растворимые микрокапсулы суспендировали в CFC 11, а фиксированные частицы суспендировали в воде. После введения дозы легкие кроликов удаляли и оценивали отложение капсул. Было установлено, что фиксированные капсулы оставались интактными в альвеолярной ткани легких. Это свидетельствует о том, что микрокапсулы имеют подходящий для дисперсии в легких размер. Для сравнения, не было обнаружено наличия интактных растворимых микрокапсул; эти капсулы растворились в жидкостях легкого. Тем не менее, при использовании флюоресцентной микроскопии наблюдалось присутствие аддукта ФИТЦ/лизин в некоторой части альвеолярной ткани. Помимо этого, наличие аддукта было также обнаружено в крови и моче животных, в противоположность фиксированным капсулам, которых там не оказалось.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2