Способ получения теплопроводной керамики на основе нитрида алюминия
Изобретение относится к области порошковой металлургии, в частности к способу получения керамики на основе нитрида алюминия, и позволяет повысить его теплопроводность до величины не менее 200 Вт/м
К. Сущность изобретения: способ включает спекание порошка нитрида алюминия в виде микрокристаллов с игольчатой формой частиц, полученного в режиме самораспространяющегося высокотемпературного синтеза, или смеси полученного любым из известных способов нитрида алюминия с не менее 5 мас.% нитрида алюминия, полученного в режиме самораспространяющегося высокотемпературного синтеза и содержащего частицы в форме монокристальных волокон, в присутствии не более 6 мас.% оксида иттрия при температуре не выше 1900°С в течение времени не более 1 ч в среде азота при давлении не менее 0,12 МПа с последующим отжигом спеченной керамики в такой же газовой среде при температуре не выше 1800°С в течение времени не менее 5 ч. Предложенный технологичный и экономичный способ получения теплопроводной керамики на основе нитрида алюминия обеспечивает теплопроводность не менее 200 Вт/м
К при использовании порошков с обычным уровнем примесей. 1 з.п.ф-лы, 1 табл., 1 ил.
Изобретение относится к области порошковой металлургии, в частности к способу получении керамики на основе нитрида алюминия - теплопроводного диэлектрика (
200 Вт/м
K), и может быть использовано для изготовления теплоотводящих подложек для микросхем в электронике, термостойких электроизоляторов, огнеупоров.
К). В принципе, это возможно - теплопроводность монокристалла AlN достаточно велика (320 Вт/м
К). Однако, в большинстве случаев в реальном спеченном поликристаллическом теле эта величина не превышает 100 Вт/м
К [1]. Причиной низкой теплопроводности спеченного поликристаллического нитрида является, главным образом, наличие в нем большого количества примесей (в первую очередь, растворенного в решетке кислорода), способствующих рассеянию фононов. Известно несколько способов повышения теплопроводности спеченного нитрида алюминия. Введение фтористых соединений редкоземельных металлов в качестве активирующих спекание и раскисляющих добавок [1] создает сложности в работе печей из-за коррозионного воздействия фторидов и повышает токсичность газообразных выбросов. Введение в исходную смесь в качестве раскислителей углерода [2] или активных металлов [3] приводит к опасности ухудшения диэлектрических свойств (в первую очередь - снижения удельного электросопротивления), использование сверхчистого исходного порошка нитрида алюминия [4] экономически нецелесообразно. Таким образом, известные способы решения задачи недостаточно технологичны, неэкономичны или приводят к снижению важных эксплуатационных характеристик изделий из нитрида алюминия. Наиболее близким к заявляемому является способ получения плотной теплопроводной керамики на основе нитрида алюминия, включающий спекание порошка нитрида алюминия, полученного карботермическим методом, в присутствии 2 мас. % оксида иттрия при температуре 1850 - 1900oC в среде азота, с последующим отжигом спеченной керамики при температуре 1820 - 1880oC в течение 4-12 часов в токе смеси азота и водорода [5]. Данный способ экономичен и технологичен, однако он позволяет получать недостаточно высокую теплопроводность керамики (около 150 Вт/м
К). Технической задачей изобретения является создание технологичного и экономичного способа получения теплопроводной керамики на основе нитрида алюминия, позволяющего обеспечить теплопроводность не менее 200 Вт/м
К при использовании порошка с обычным уровнем примесей. Решение поставленной задачи достигается предлагаемым способом получения теплопроводной керамики на основе нитрида алюминия, включающим спекание порошка нитрида алюминия в виде микрокристаллов с игольчатой формой частиц, полученного в режиме самораспространяющегося высокотемпературного синтеза или смеси полученного любым из известных способов нитрида алюминия с не менее 5 мас.% нитрида алюминия, полученного в режиме самораспространяющегося высокотемпературного синтеза и содержащего частицы в форме монокристальных волокон в присутствии не менее 6 мас.% оксида иттрия при температуре не выше 1900oC в течение времени не более 1 часа в среде азота при давлении не менее 0,12 МПа с последующим отжигом спеченной керамики в такой же газовой среде при температуре не выше 1800oC в течение времени не менее 5 часов. Сущность изобретения заключается в следующем. Один из наиболее эффективных путей получения высокой теплопроводности керамики из нитрида алюминия - обеспечение такой структуры изделия, при которой большая его часть не имеет дефектов, рассеивающих фононы. Одно из таких препятствий - поры. Для их устранения следует при спекании обеспечить плотность, близкую к теоретической. Практически всегда при спекании нитрида алюминия повышение плотности до такого уровня достигается за счет применения активаторов спекания. Чаще всего это - оксид иттрия, который вступает при нагреве во взаимодействие с оксидом алюминия (до 60% кислорода, присутствующего в исходном порошке, входит в состав этого оксида), в результате взаимодействия образуется плавящаяся при температуре спекания эвтектика, которая и активирует уплотнение по известному механизму спекания в присутствии жидкой фазы. После охлаждения эта эвтектика застывает в виде аморфной стеклофазы. Для повышения эффективности такого активирования необходимо смешивание исходного порошка нитрида алюминия и оксида иттрия совмещать с интенсивным размолом, результатом которого является, как правило, получение округлых и мелких частиц порошка с равномерным распределением между ними оксида, а значит - наличие в керамике после спекания аналогичных по форме зерен, практически полностью "укутанных" в оксидную эвтектику. Разветвленность межзеренных границ и их загрязненность аморфной стеклофазой создают дополнительную систему дефектов, усиливающих фононное рассеяние. В этом случае теплопроводность нитрида алюминия не превышает 100 Вт/м
К. Для получения спеченного нитрида алюминия с высокой теплопроводностью необходимо реорганизовать эту структуру, обеспечив наличие ограненных кристаллическими плоскостями крупных зерен нитрида с преимущественным расположением стеклофазы в форме сегрегаций, локализованных в тройных стыках границ этих зерен. Известен и путь для проведения такой рекристаллизации - высокотемпературный отжиг. Однако, для достижения поставленной цели известным способом необходимо отжиг вести в течение очень длительного времени (до 35 часов [6] ), в противном случае теплопроводность не достигает заданного уровня - 200 Вт/м
К [5]. Ускорить рекристаллизацию нитрида алюминия при отжиге можно, введя в его состав микрочастицы, способные играть роль зародышей новых зерен. Такими микрочастицами могут быть монокристальные фрагменты порошка, полученного в режиме самораспространяющегося высокотемпературного синтеза и содержащего порошок соответствующей морфологии. В настоящее время установлена возможность получения в режиме самораспространяющегося высокотемпературного синтеза двух видов такого порошка нитрида алюминия: в форме игольчатых кристаллов [7] и в форме монокристальных волокон. Последние получают конденсацией из газовой фазы под давлением азота 15 - 20 МПа. Для высокотемпературного самораспространяющегося синтеза монокристальных волокон используют шихту на основе порошка алюминия с неорганическими добавками, которые и обеспечивают выполнение указанного выше механизма реакции. В первом случае при размоле порошка образуется значительное количество микрочастиц-фрагментов монокристаллов нитрида алюминия. Во втором случае - монокристальными являются все фрагменты. Вследствие этого для ускорения рекристаллизации нитрида алюминия при отжиге следует изготавливать теплопроводные подложки либо из порошка первого типа (микрокристаллов с игольчатой формой частиц), либо из смеси нитрида алюминия, полученного любым из известных способов с добавлением порошка второго типа (содержащего частицы в форме монокристальных волокон). Установлено, что для решения поставленной задачи следует ввести в смесь не менее 5 мас.% частиц-зародышей в форме монокристальных фрагментов. В случае, когда эти частицы являются добавкой к основному исходному порошку, в качестве последнего может использоваться нитрид алюминия, полученный любым из известных способов: самораспространяющимся высокотемпературным синтезом, карботермическим или другим печным синтезом, плазмохимическим синтезом. Требования по содержанию кислорода к исходному порошку не являются критическими, поскольку теплопроводность обеспечивается за счет извлечения большей части кислорода из решетки нитрида при формировании эвтектики с последующей локализацией застывшей эвтектики в тройных стыках рекристаллизовавшихся зерен. Вполне пригодными являются порошки с обычным для нитрида алюминия содержанием кислорода (
1 мас.%). Содержание оксида иттрия в смеси для изготовления теплопроводных подложек из нитрида алюминия не должно превышать 6 мас.%. Введение большего количества этого активатора не повышает эффективность уплотнения при спекании, но затрудняет рекристаллизацию при отжиге. Спекание и отжиг компакта согласно предлагаемого способа должно проводиться в атмосфере азота при избыточном давлении не менее 0,12 МПа для подавления испарения нитрида, что может привести к уменьшению его плотности. Для этой же цели должна быть ограничена температура спекания - не выше 1900oC. Температура отжига должна быть не выше 1800oC, а продолжительность не менее 5 часов. При более высокой температуре при длительном отжиге часть кислорода из эвтектики диффундирует в решетку нитрида, что с неизбежностью приводит к снижению теплопроводности. При спекании эта опасность невелика из-за малой продолжительности процесса (1 час). Отжиг при выдержке менее 5 часов недостаточен для рекристаллизации нитрида, а следовательно - для достижения высокой теплопроводности. В реальных условиях спекание и отжиг могут быть проведены как единая технологическая операция по ступенчатому режиму термообработки в печи. Сущность изобретения подтверждается примерами. Пример. Порошок нитрида алюминия в виде микрокристаллов с игольчатой формой частиц (П1), полученный в режиме самораспространяющегося высокотемпературного синтеза (содержание азота - 33,8 мас.%; содержание кислорода - 0,7 мас.%, содержание железа - 0,06 мас.%) измельчают в планетарной мельнице в присутствии 4 мас.% оксида иттрия всухую в керамическом барабане с шарами из нитрида алюминия. Полученную при этом смесь с удельной поверхностью 2,9 - 3,2 м2/г гранулируют на связке из синтетического каучука в бензине, прессуют в стальной пресс-форме при давлении 0,1 МПа, а затем доуплотняют в гидростате при давлении 0,5 МПа. Компакты с плотностью 2,2 - 2,4 г/см3 помещают в графитовый стакан с засыпкой из крупного порошка нитрида алюминия и спекают в печи СНВ при температуре 1900oC с выдержкой 1 час при рабочей температуре в атмосфере химически чистого азота при давлении последнего 0,12 МПа, а затем отжигают в той же печи при температуре 1800oC в течение 10 часов. Структура нитрида алюминия после спекания представлена на фиг. 1а, а после отжига - на фиг. 1б. Очевидно, что после отжига наблюдается полная рекристаллизация. Теплопроводность измеряли стационарным безэталонным методом. Она составила: после спекания - 96 Вт/м
К, после отжига - 210 Вт/м
К. Другие примеры сведены в таблицу, при составлении которой использованы следующие условные обозначения порошков нитрида алюминия: П2 - порошок с частицами в форме монокристальных волокон, содержащий (мас. %): N2 - 33,2, O2 - 0,9, Fe - 0,08; получен методом самораспространяющегося высокотемпературного синтеза; П3 - порошок, содержащий (мас.%): N2 - 33,5, O2 - 0,6, Fe - 0,06; получен методом самораспространяющегося высокотемпературного синтеза [8]; П4 - порошок с частицами округлой формы, содержащий (мас.%): N2 - 33,5, O2 - 0,8, Fe - 0,08; получен карботермическим синтезом. Таким образом, предложенный способ позволяет получать керамику на основе нитрида алюминия с теплопроводностью не менее 200 Вт/м
К. При этом способ технологически эффективен, т.к. снижается время спекания и температура отжига. Литература 1. Патент США N 4952535, кл. C 04 B 35/00, 1990. 2. Патент РФ N 2032642, кл. C 04 B 35/58, 1995. 3. Патент США N 5459113, кл. C 04 B 35/581, 1995. 4. Патент США N 4803183, кл. C 04 B 35/58, 1989. 5. Патент РФ N 2029752, кл. C 04 B 35/58, 1995. 6. S. Ruckmich, A. Kranzman, E. Bischoff, R.I. Brook, A Description of Microstructure Applied to the Thermal Conductivity of AIN Substrate Materials - Journal of the European Ceramic Society, 1991, v. 7, N 5 (335). 7. Патент РФ N 2091300, кл. C 01 B 21/072, 1995. 8. Патент РФ N 2061653, кл. C 01 B 21/072, 1996.Формула изобретения
1. Способ получения теплопроводной керамики на основе нитрида алюминия, включающий спекание нитрида алюминия в присутствии оксида иттрия в среде азота с последующим отжигом спеченной керамики, отличающийся тем, что для изготовления керамики используют порошок нитрида алюминия в виде микрокристаллов с игольчатой формой частиц, полученный в режиме самораспространяющегося высокотемпературного синтеза, или смесь порошка нитрида алюминия, полученного любым из известных методов, с не менее 5 мас.% нитрида алюминия в форме монокристальных волокон, полученного в режиме самораспространяющегося высокотемпературного синтеза, при этом спекание и отжиг проводят при давлении азота не менее 0,15 Мпа, спекание при температуре не выше 1900oC и выдержке не более 1 ч, а отжиг - при температуре не выше 1800oC и выдержке не менее 5 ч. 2. Способ по п.1, отличающийся тем, что спекание нитрида алюминия проводят в присутствии не более 6 мас.% оксида иРИСУНКИ
Рисунок 1, Рисунок 2














