Гибкий нагревательный элемент
Изобретение относится к электротермии и может быть использовано при изготовлении полимерных электронагревателей бытового и промышленного назначения. В гибком нагревательном элементе основа токопроводящей ткани выполнена из массива изоляционных нитей, размещенных между электродами, а уток выполнен из комплексных электропроводящих тепловыделяющих нитей, размещенных перпендикулярно электродам. Предложены математические соотношения, обеспечивающие создание электробезопасного резистивного слоя, в соответствии с которыми рассчитываются количество электропроводящих нитей (n) на единицу длины резистивного слоя, количество электродов (К) и количество составляющих их металлизированных нитей (m). В качестве комплексной электропроводящей тепловыделяющей нити использована многокомпонентная нить структуры "оболочка-ядро", содержащая в "оболочке" фторсодержащий полиолефин на основе саженаполненного сополимера тетрафторэтилена с винилиденфторидом, а в "ядре" поликапроамидные или стеклянные волокна. Техническим результатом, который может быть получен от использования изобретения, является повышение электробезопасности и надежности гибкого нагревательного элемента и, как следствие, изделия в целом. 3 з.п.ф-лы, 3 ил, 1 табл.
Изобретение относится к электротермии, а именно к гибким нагревательным элементам, резистивный слой которых выполнен в виде ткани из комплексных элекропроводящих нитей, и может быть использовано в быту, медицине, сельхозобъектах, а также устройствах для нагрева жидких и газообразных сред, применяемых в различных отраслях промышленности.
Известен тканный электронагреватель, в котором основа и уток выполнены из электропроводных и неэлектропроводных нитей, уложенных с чередованием в одном из направлений ткани, а электроды расположены вдоль основы (патент США N 3349359, кл. H 05 B 3/34, 1967 г.) Известен также тканный нагреватель, неэлектропроводные нити которого выполнены из комплексных хлопковых волокон, при этом объемное соотношение неэлектропроводных нитей к электропроводным нитям основы составляет 1:1 - 1: 1,5, а объемное соотношение электропроводных нитей основы и утка - 1:1,5 - 1:10 (патент РФ N 2046552, кл. H 05 B 3/36, 1995 г.) В указанных изобретениях решается задача по уменьшению усадки резистивного слоя в процессе изготовления и эксплуатации нагревательных элементов. Аналогичная задача решается и в гибком нагревательном элементе (патент СССР N 1794284 A3, кл. H 05 B 3/38, 1993 г., Бюл. N 5), содержащем резистивный слой в виде токопроводящей ткани, уток и основа которой выполнены из комплексных электропроводящих нитей, изоляционных нитей и металлизированных нитей, объединенных в электроды, которые размещены по краям резистивного элемента и огибают комплексные электропроводящие полимерные нити. Основным недостатком известных нагревательных элементов является то, что они не регламентируют соотношение между требуемыми техническими характеристиками нагревательного элемента и необходимой для их практического воплощения текстильной структурой резистивного слоя. Указанное обстоятельство может привести к снижению надежности и долговечности гибкого нагревательного элемента. Ближайшим аналогом, выбранным в качестве прототипа, является изобретение по патенту СССР N 1794284. Основной задачей разработки является создание такого гибкого нагревательного элемента, в котором были бы исключены перечисленные недостатки, а текстильная структура его резистивного слоя в виде токопроводящей ткани регламентировала бы требуемые технические параметры нагревательного элемента для различных условий эксплуатации изделий на его основе. Техническим результатом, который может быть получен от использования изобретения, является повышение электробезопасности и надежности гибкого нагревательного элемента и, как следствие, изделия в целом. Основная задача решена и технический результат достигнут за счет того, что в гибком нагревательном элементе, содержащем резистивный слой в виде токопроводящей ткани, уток и основа которой выполнены из комплексных электропроводящих тепловыделяющих полимерных нитей, изоляционных нитей и электродов, выполненных в виде металлизированных нитей, огибающих комплексные электропроводящие тепловыделяющие полимерные нити, согласно предлагаемому изобретению основа токопроводящей ткани выполнена из массива изоляционных нитей, размещенных между электродами, а уток выполнен из комплексных электропроводящих тепловыделяющих полимерных нитей, размещенных перпендикулярно электродам, при этом n - количество электропроводящих нитей на единицу длины резистивного слоя и K* - количество электродов на единицу ширины резистивного слоя должно соответствовать соотношениям


Rn - линейное электрическое сопротивление электропроводящей нити, Ом/м,
а количество металлизированных нитей в электроде для четного m1 и нечетного m2 количества электродов должно соответствовать соотношениям


где P - номинальная мощность нагревательного элемента, Вт;
K* - количество электродов на единицу ширины резистивного слоя, шт;
U - заданное напряжение питания, В;

Rm - удельное электросопротивление металлизированной нити, Ом/м;
при этом комплексная электропроводящая тепловыделяющая полимерная нить имеет структуру "оболочка-ядро" и содержит в "ядре" поликапроамидные или стеклянные волокна, а в "оболочке" саженаполненный фторсодержащий полиолефин на основе сополимера тетрафторэтилена с винилиденфторидом при следующем соотношении ингредиентов, мас.%:
а) для "ядра" из поликапроамидных волокон:
поликапроамидные волокна - 62 - 56
сополимер тетрафторэтилена с винилиденфторидом - 23 - 25
печная сажа - 15 - 19
б) для "ядра" из стеклянных волокон:
стеклянные волокна - 69 - 54
сополимер тетрафторэтилена с винилиденфторидом - 19 - 20
печная сажа - 12 - 16
Отличительные признаки являются существенными, поскольку каждый из них в отдельности и совместно направлен на решение поставленной задачи и достижение нового технического результата. Как известно, основным техническим параметром любого электронагревательного устройства является его электрическая мощность. Для обеспечения заданного значения указанного параметра резистивный слой гибкого нагревательного элемента должен содержать комплексные электропроводящие тепловыделяющие нити, ориентированные перпендикулярно электродам, т.е. размещенные по утку токопроводящей ткани, причем их количество должно быть не меньше величины, определяемой соотношением n






При меньшем количестве металлизированные нити (при прохождении через них электрического тока) будут перегреваться и разрушать токопроводящие нити, огибающие их, что обязательно приведет к выходу нагревательного элемента из строя. Использование комплексных электропроводящих нитей структуры "оболочка-ядро", содержащих в "ядре" поликапроамидные или стеклянные волокна, а в "оболочке" сополимер тетрафторэтилена с винилидентфторидом, наполненный печной сажей, позволит повысить технологичность и качество нагревательного элемента в процессе его изготовления и эксплуатации. Указанные отличительные существенные признаки являются новыми, так как их использование в известном уровне техники, аналогах и прототипе не обнаружено, что позволяет характеризовать предложенное техническое решение соответствием критерию "новизна". Единая совокупность новых существенных признаков с общими известными существенными признаками позволяет решить поставленную задачу и достичь новый технический результат, что позволяет характеризовать новое техническое решение существенными отличиями по сравнению с известным уровнем техники, аналогами и прототипом. Новое техническое решение является результатом научно-исследовательской и опытно-конструкторской отработки и творческого вклада, получено без использования стандартных проектировочных решений или каких-либо рекомендаций, по своей оригинальности и содержательности исполнения соответствует критерию "изобретательский уровень". На фиг. 1 представлен фрагмент токопроводящей ткани для резистивного слоя нагревательного элемента: на фиг. 2 представлен резистивный слой с четным (а) и нечетным (б) количеством электродов в вариантном исполнении; на фиг. 3 представлена структура комплексной электропроводящей тепловыделяющей нити, содержащей в "ядре" поликапроамидные или стеклянные волокна, а в "оболочке" саженаполненный полимер тетрафторэтилена с винилиденфторидом. Фрагмент токопроводящей ткани для резистивного элемента содержит массив изоляционных нитей 1, размещенных между электродами 2, и комплексные электропроводящие тепловыделяющие нити 3, ориентированные перпендикулярно электродам. Количество комплексных электропроводящих тепловыделяющих нитей определяется исходя из заданных технических параметров нагревательного элемента и структурных параметров токопроводящей ткани. К техническим параметрам нагревательного элемента относится мощность (Р, Вт), напряжение питания (U, B) и габаритные размеры резистивного слоя - длина (A, м) и ширина (B, м). Исходя из выше упомянутых параметров необходимо определить структурные параметры резистивного слоя, а именно: количество комплексных электропроводящих тепловыделяющих нитей на единицу длины резистивного слоя (n/A, шт/м); количество электродов (K*, штук) и количество металлизированных нитей в электроде (m, шт). Расчеты указанных параметров представлены ниже. I. Определение n. Как известно, предельное тепловыделение i-ой нити (до разрушения) определяется коэффициентом

P










отсюда

II. Расчет системы распределения электропитания. На фиг. 2 представлены вариантные исполнения резистивного слоя с различным количеством электродов, скоммутированных между собой при помощи тоководов 4. Как видно из эскизов резистивного слоя, представленных на фиг. 2, A и B -соответственно длина и ширина резистивного слоя, L - расстояние между электродами, а количество электродов равно K* = K + 1, где K - количество полос из массива электроизоляционных нитей. Исходя их этого
K = B/L или L = B/K. Расчет системы распределения электропитания в нагревательном элементе определяется из того, что известны количество комплексных электропроводящих нитей на единицу длины резистивного слоя (n); габариты резистивного слоя A и B (длина и ширина соответственно) (м); линейное электрическое сопротивление комплексной электропроводящей нити (Rn, Ом/м). Определяем электрическое сопротивление фрагмента резистивного слоя (R1), расположенного между соседними электродами, и резистивного слоя (R) в целом:
R1 = Rn





исходя из того, что L = B/K, получим R = 1/K



известно P = U2/R, тогда R = U2/P
или K2 = P





В соответствии с вышеизложенным количество электродов в резистивном слое в зависимости от задаваемых электрических и геометрических параметров нагревательного элемента определяется соотношением

III. Определение количества металлизированных нитей в электроде. Определение количества металлизированных нитей в электроде производим с учетом того, что ток, поступающий от источника питания на электроды, не должен приводить к разрушению металлизированных нитей, составляющих эти электроды. Суммарный ток, текущий по резистивному слою, равен
I = P/U,
где P - мощность нагревательного элемента, Вт;
U - заданное напряжение питания, В. Этот ток распределяется между электродами. Если электродов K, то по каждому из них течет ток:
а) для четного количества электродов
Ik = 21/K* = 2P/K*

б) для нечетного количества электродов
Ik = 21/K*-1 = 2P/(K*-1)

а) для четного количества электродов
I1 = 2P/K*


б) для нечетного количества электродов
I1 = 2P/(K*-1)


I2i



где Rm - удельное электрическое сопротивление металлизированной нити, Ом/м. Тогда количество металлизированных нитей (m) в электроде составит:
а) для четного количества электродов


б) для нечетного количества электродов


Не менее важной задачей являлась разработка комплексных электропроводящих тепловыделяющих нитей резистивного слоя, которые обеспечивали бы работоспособность гибкого нагревательного элемента. Структура разработанных комплексных электропроводящих тепловыделяющих нитей, представленных на фиг. 3, состоит из "ядра" на основе поликапроамидных 5 и стеклянных 6 волокон, вокруг которых локализована токопроводящая композиция 7 из саженаполненного сополимера тетрафторэтилена с винилиденфторидом. Выбор сополимера тетрафторэтилена с винилиденфторидом (далее по тексту "сополимер") обусловлен тем, что указанный сополимер из известных фторсодержащих полиолефинов в сочетании с печной сажей обладает наименьшим удельным электрическим сопротивлением. Это связано с тем, что высокоструктурированная печная сажа гидрофобна и хорошо совмещается с фторсодержащими полиолефинами. Кроме того, на поверхности элементарных частиц печной сажи практически отсутствуют кислородосодержащие комплексы, что немаловажно для получения композиции с высокой долей использования проводящего материала. Однако нити из композиции "сополимер+сажа" могут подвергаться значительным пластификационным вытяжкам, достигающим 500%. Указанное обстоятельство потребовало введения в структуру нити армирующего элемента - "ядра". Основными требованиями к армирующему элементу комплексной нити являлись следующие: высокая механическая прочность и хемостойкость. С учетом вышеуказанного из всех типов волокон наиболее приемлимыми являются поликапроамидные, но для создания нагревательных элементов, работающих в пределах 130-180oC, необходимо использовать в качестве "ядра" комплексной нити стеклянные волокна. Технология изготовления комплексных электропроводящих полимерных нитей по "сухому" способу формования представляет собой процесс, основные операции которого приведены в нижепредставленных примерах. Пример 1. Из мерника в аппарат-десольвер поступает растворитель - ацетон и сополимер. Через патрубок загружают заданное количество сажи и приготавливают прядильный раствор. Далее производят диспергирование частиц сажи в роторно-пульсационныом смесителе и после вакуумирования подают полученный раствор в фильерный комплект, куда одновременно подается и волокнистый наполнитель. Фильера заканчивается отверстием 0,9 - 1,1 мм, которое регламентирует толщину наносимого слоя. По выходу из фильеры волокнистый наполнитель поступает в шахту, куда противотоком подают горячий воздух, подогретый до температуры 120 - 135oC. При этом ацетон удаляется из шахты на регенерацию, а комплексная электропроводящая нить принимается на паковку для дальнейшей переработки в тканный наполнитель с заданными техническими и текстильными характеристиками. В процессе изготовления комплексной электропроводящей нити по примеру 1 ингредиенты были взяты в следующих соотношениях, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 24
печная сажа - 10
поликапроамидные волокна - 66
Пример 2. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 23
печная сажа - 13
поликапроамидные волокна - 64
Пример 3. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 23
печная сажа - 15
поликапроамидные волокна - 62
Пример 4. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 25
печная сажа - 19
поликапроамидные волокна - 56
Пример 5. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 26
печная сажа - 22
поликапроамидные волокна - 52
Пример 6. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 16
печная сажа - 09
стеклянные волокна - 75
Пример 7. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 17
печная сажа - 10
стеклянные волокна - 73
Пример 8. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 19
печная сажа - 12
стеклянные волокна - 69
Пример 9. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 20
печная сажа - 16
стеклянные волокна - 64
Пример 10. Осуществляют аналогично примеру 1 при следующем соотношении ингредиентов комплексной нити, мас.%:
сополимер тетрафторэтилена с винилиденфторидом - 22
печная сажа - 18
стеклянные волокна - 60
Результаты испытаний по определению физико-механических и электрофизических характеристик комплексных электропроводящих нитей по примерам 1-10 представлены в таблице. Анализ данных, представленных в таблице, показывает, что наиболее приемлемыми являются комплексные электропроводящие нити по примерам 3, 4 ("ядро" выполнено из волокон поликапроамида) и 8, 9 ("ядро" выполнено из стеклянных волокон), так как нити из указанных композиций обладают наименьшим линейным электрическим сопротивлением (1400-1500 Ом/м для нитей на основе капрона и 1250-1300 Ом/м для нитей на основе стекла) и имеют минимальное удлинение при разрыве. Кроме того, указанные нити обладают качественной оболочкой, не повреждаемой в процессе переработки ее в ткань. Примеры расчета резистивного слоя нагревательного элемента с использованием разработанных комплексных нитей структуры "оболочка-ядро", содержащих в "оболочке" саженаполненный сополимер тетрафторэтилена с винилиденфторидом, а в "ядре" наполнитель на основе поликапроамидных (вариант I) или стеклянных волокон (вариант II) представлены ниже. Пример расчета структуры резистивного слоя (вариант I). Задано: номинальная мощность нагревательного элемента P = 2000 Вт; напряжение питания U = 220 В; длина A = 5 м; ширина B = 1 м. Требуется определить структуру резистивного слоя, обеспечивающую заданные технические параметры. Решение. В качестве тепловыделяющей комплексной электропроводящей нити выберем нить по примеру 3 (см. табл.), линейное электрическое сопротивление которой Rn = 150000 Ом/м с предельным допустимым тепловыделением на единицу длины нити


n = 2000/0,5




Округлим полученное выражение до целых чисел (без учета дробной части) и путем повторного использования выражения II определим количество тепловыделяющих нитей на единицу длины резистивного слоя:
n = R



n = 2000








Полученное значение выше максимально реализуемой величины при ткачестве текстильной плотности (2000 нитей/метр) комплексной тепловыделяющей нити с "ядром" из поликапроамидных волокон. Следовательно, необходимо использовать комплексную электропроводящую нить с большим предельно допустимым тепловыделением. Из таблицы видно, что наиболее приемлемой является комплексная электропроводящая нить с "ядром" из стеклянных волокон, линейное электрическое сопротивление которой Rn = 120000 Ом/м с предельно допустимым тепловыделением


n = 3000/1,5


т. е. указанная нить обеспечит работоспособность нагревательного элемента, соответствующую заданным характеристикам. Используя выражение II, проведем предварительную оценку необходимого количества электродов в резистивном слое:


Округлив полученное значение до целых чисел (без учета дробной части) и путем повторного использования выражения II уточним количество тепловыделяющих нитей на единицу длины резистивного слоя:
n = Rn



n = 120000








Формула изобретения


где P - номинальная мощность нагревательного элемента, Вт;

A и B - соответственно длина и ширина резистивного слоя, м;
U - заданное напряжение питания, В;
Rn - линейное электрическое сопротивление электропроводящей нити, Ом/м. 2. Гибкий нагревательный элемент по п.1, отличающийся тем, что количество металлизированных нитей в электроде для четного m1 и нечетного m2 количества электродов должно соответствовать соотношениям:


где P - номинальная мощность нагревательного элемента, Вт;
K* - количество электродов на единицу ширины резистивного слоя, шт.;
U - заданное напряжение питания, В;

Rm - удельное электросопротивление металлизированной нити, Ом/м. 3. Гибкий нагревательный элемент по любому из пп.1 и 2, отличающийся тем, что комплексная электропроводящая тепловыделяющая нить имеет структуру "оболочка-ядро" и содержит в "ядре" поликапроамидные волокна, а в "оболочке" - саженаполненный фторсодержащий полиолефин на основе сополимера тетрафторэтилена с винилиденфторидом при следующем соотношении ингредиентов, мас.%:
Поликапроамидные волокна - 62 - 56
Сополимер тетрафторэтилена с винилиденфторидом - 23 - 25
Печная сажа - 15 - 19
4. Гибкий нагревательный элемент по любому из пп.1 и 2, отличающийся тем, что комплексная электропроводящая тепловыделяющая нить имеет структуру "оболочка-ядро" и "ядро" комплексной электропроводящей тепловыделяющей нити содержит стеклянные волокна при следующем соотношении ингредиентов, мас.%:
Стеклянные волокна - 69 - 64
Сополимер тетрафторэтилена с винилиденфторидом - 19 - 20
Печная сажа - 12 - 16
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4