Способ охлаждения гигроскопичных кристаллов
Изобретение относится к квантовой электронике и может быть использовано при разработке твердотельных перестраиваемых лазеров, лазеров с удвоением частоты излучения, с синхронизацией мод, с пассивной модуляцией добротности и т. п. , а также в тех областях науки и техники, где необходимо охлаждение гигроскопических кристаллов. Сущность изобретения заключается в том, что на боковую поверхность кристалла предварительно напыляют тонкий слой защитного материала, устанавливают кристалл в емкость и отводят тепло от его боковой поверхности потоком прокачиваемой через емкость охлаждающей среды. Наличие защитного слоя позволяет использовать в качестве хладагента жидкость.
Изобретение относится к квантовой электронике и может быть использовано при разработке твердотельных перестраиваемых лазеров, лазеров с удвоением частоты излучения, с синхронизацией мод, с пассивной модуляцией добротности и т. п. , а также в тех областях науки и техники, где необходимо охлаждение гигроскопических кристаллов.
Известен способ охлаждения гигроскопических кристаллов, заключающийся в том, что кристалл устанавливают на массивное основание с полостью для хладагента, между боковой поверхностью кристалла и основанием помещают прокладку из пластичного материала и отводят тепло от основания потоком прокачиваемой охлаждающей среды (Басиев Т.Т., Кравец А.Н., Федин А.В. Технологические Nd-лазеры с пассивной модуляцией добротности кристаллами LiF:F2. Препринт N 1.- М.: ИОФ РАН.- 1993.- 60 с.). Недостатком способа является низкая эффективность охлаждения кристалла вследствие теплоотвода через двухслойную стенку, а также возникновения термических сопротивлений в местах контакта кристалла с прокладкой и прокладки с основанием. Известен также способ охлаждения лазерных кристаллов, заключающийся в том, что кристалл устанавливают в емкость и отводят тепло от боковой поверхности потоком прокачиваемой через емкость охлаждающей среды (Зверев Г.М., Голяев Ю.Д. Лазеры на кристаллах и их применение.- М. Радио и связь, Рикел, 1994.- 312 с.). Недостатком этого способа является невозможность охлаждения гигроскопичных кристаллов. Цель изобретения - расширение технологических возможностей указанного способа при сохранении его эффективности. Поставленная цель достигается тем, что на боковую поверхность кристалла предварительно напыляют сплошной защитный слой из теплопроводного материала, кристалл устанавливают в емкость и отводят тепло от боковой поверхности кристалла потоком прокачиваемой через емкость охлаждающей среды. В предлагаемом способе напыленный защитный слой герметично закрывает боковую поверхность охлаждаемого кристалла и предохраняет ее от контакта с охлаждающей средой, что позволяет использовать в качестве хладагента жидкость, в то время как в известном способе теплоотвод осуществляется при непосредственном контакте с охлаждающей средой. Кроме того, толщина наносимого напылением слоя мала по сравнению с характерным размером поперечного сечения кристалла, поэтому при использовании материалов с высокой теплопроводностью в качестве напыляемого вещества практически не ухудшаются условия теплообмена между поверхностью кристалла и хладагентом. При распространении лазерного излучения вдоль оси кристалла часть его мощности выделяется в виде тепла, представляющего собой внутренний источник теплоты мощностью Qv. Для наиболее часто используемой в лазерной технике формы кристалла в виде круглого стержня при стационарном охлаждении температура в любой точке поперечного сечения определяется зависимостью





где tсл - температура на поверхности защитного слоя; d - текущий диаметр. Тепловой поток через защитный слой радиусом r и длиной l можно оценить по закону Фурье

Решив совместно (5) и (6), найдем, что через единицу длины слоя тепловой поток составит

где величина


Сложив выражения (4) и (8), получим перепад температуры между центром кристалла и поверхностью защитного слоя, обтекаемого хладагентом

В полученном выражении dсл = d0+






С точки зрения физических основ теплообмена это означает, что при условии


Формула изобретения