Изобретение относится к лазерной технике, а именно к импульсно-периодическим твердотельным лазерам. Импульсно-периодический лазер содержит осветитель, внутри которого расположены активный элемент и лампа накачки. Верхняя часть осветителя содержит лампу накачки, а нижняя часть осветителя содержит активный элемент, теплоотводящую пластину, прозрачную для излучения накачки, прижимную пластину. Активный элемент выполнен пластинчатым и упруго прижат нижней частью осветителя по всей длине к теплопроводящей пластине. Коэффициенты теплопроводности активного элемента
и прозрачной пластины
1, коэффициенты теплопередачи
1 верхней части активного элемента,
2 нижней части активного элемента, контактирующего с прижимной пластиной, связаны следующими соотношениями:
1
2
, 0,5<
2/
1<1. Технический результат изобретения - повышение эффективности охлаждения лазера. 2 ил.
Изобретение относится к квантовой электронике и может быть использовано в импульсно-периодических твердотельных лазерах с кондуктивным охлаждением, работающих как в режиме кратковременных циклов излучения (десятки секунд), так и в продолжительном режиме (несколько минут) со стабильной энергией излучения, повышенным КПД и высокой направленностью излучения при средних (100-300 Вт) мощностях накачки.
Известен твердотельный лазер (см.
патент RU 2102824 от 02.08.96), осветитель которого, состоящий из отражателя, лампы накачки и активного элемента, упруго прижат к основанию корпуса лазера.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного устройства, относится то, что данное устройство, слабо подверженное влиянию вибрации, механических и термических деформаций корпуса, критично к перегреву и термическим искажениям активного элемента, возникающим из-за значительного градиента температуры между ближней к лампе накачки и соответственно более нагретой частью и противоположной, менее нагретой при работе с повышенными мощностями накачки.
Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков и выбранным за прототип является твердотельный лазер (Балашов И.Ф. и др. "Охлаждение активного тела ОКГ с помощью металлического теплопроводника". Оптико-механическая промышленность, 4, 1968, с. 5), в котором активный элемент нижней частью посажен на теплоотвод посредством теплопроводной прослойки. В результате этого обеспечивается отвод тепла от активного элемента, что позволяет использовать более высокие мощности накачки.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного устройства, относится нескомпенсированный симметричный градиент температуры в плоскости, проходящей через оси лампы накачки и активного элемента, приводящий к возникновению цилиндрической тепловой линзы, что приводит к снижению выходных параметров излучения.
Сущность изобретения заключается в повышении КПД, мощности излучения и направленности излучения твердотельного лазера с безжидкостной системой охлаждения как в режиме кратковременных циклов излучения (десятки секунд), так и в продолжительном режиме (несколько минут) в широком диапазоне мощностей накачек (от 100 до 300 Вт).
Указанный технический результат при осуществлении изобретения достигается тем, что верхняя часть осветителя содержит лампу накачки, а нижняя часть осветителя содержит активный элемент, теплоотводящую пластину, прозрачную для излучения накачки, прижимную пластину, при этом активный элемент выполнен пластинчатым и упруго прижат по всей длине нижней частью осветителя к теплопроводящей пластине, причем коэффициенты теплопроводности активного элемента

и прозрачной пластины
1, коэффициенты теплопередачи
1 верхней части активного элемента и
2 нижней части активного элемента, контактирующего с прижимной подвижной частью осветителя, связаны следующими соотношениями:
1
2

, 0,5<
2/
1<1. Кривая 1 - для коэффициента теплопередачи
2, удовлетворяющего условию 0,5<
2/
1<1;
2/
1>>1 (коэффициент теплопередачи
1 от верхней части активного элемента, контактирующего с прозрачной пластиной, значительно меньше
2 коэффициента теплопередачи от нижней части активного элемента); Кривая 3 - для случая, когда
2/
1<0,5 (прижимная пластина выполнена из молочного стекла).
Аргументы, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата, заключаются в следующем.
Активный элемент 1 пластинчатого типа наиболее нагретой стороной (фиг.1) упруго прижат к плоской прозрачной пластине 2 прижимной пластиной 3 с отражающим покрытием. Верхняя часть осветителя с лампой накачки 4 изолирована тонкими теплоизоляционными фторопластовыми прокладками 5 от нижней части осветителя, содержащей активный элемент 1, пластину 2 и прижимную пластину 3. Пружинный механизм 6 осуществляет упругий прижим активного элемента 1 к прозрачной теплоотводящей пластине 2, имеющей хороший тепловой контакт с массивным алюминиевым корпусом 7 осветителя.
Устройство работает следующим образом, В процессе работы лампы накачки активный элемент нагревается симметрично за счет притока тепла от баллона лампы накачки и поглощения излучения накачки, так как из-за различий в коэффициентах теплопроводности уравниваются температуры ближней к лампе накачки части активного элемента и противоположной. Одновременно с нагревом за счет контактирования ближней к лампе накачки грани активного элемента с прозрачной теплопроводной пластиной и противоположной грани с прижимной пластиной с меньшим коэффициентом теплопередачи тепло симметрично удаляется по данному пути на алюминиевый корпус осветителя и его ребрами рассеивается в наружную среду.
Постоянный упругий поджим активного элемента обеспечивает надежный теплоотвод как от верхней части активного элемента, так и нижней. Упругость прижима выбрана таким образом, чтобы для предельно допустимых мощностей накачек внутренние напряжения, возникшие в активном элементе, не вызвали его разрушения, а привели только к клиновой деформации активного элемента.
Так как верхняя часть активного элемента нагревается больше из-за близости к баллону лампы накачки по сравнению с противоположной, теплопроводность материала прозрачной пластины, с которой контактирует данная часть активного элемента, должна быть больше теплопроводности материала прижимной части и соответствовать соотношению
1
2

. При этом коэффициент теплопередачи
1 от верхней части активного элемента, контактирующего с прозрачной пластиной, и коэффициент теплопередачи
2 от нижней части активного элемента, контактирующего с прижимной пластиной, должны соответствовать соотношению 0,5<
2/
1<1. Сравнительные испытания лазеров, выполненных по прототипу и изобретению, показали, что при работе в циклическом режиме с частотой следования импульсов 20 Гц и энергией накачки 4-5 Дж лазер, выполненный по изобретению, по сравнению с прототипом, обеспечивал стабильную работу в течение 1-1,5 мин в плоскопараллельном резонаторе длиной 29 см, в то время как у прототипа для компенсации симметричной термооптической составляющей в активном элементе применялся устойчивый резонатор, что в конечном счете приводило к повышению расходимости излучения.
В конкретном варианте твердотельного лазера использовался активный элемент из КГВ: Nd
3+ толщиной и шириной 3 мм, длиной 50 мм, коэффициентом теплопроводности

= 2,8 Вт

м
-1 град
-1. Плоскость поляризации излучения активного элемента проходила через плоскость, содержащую активный элемент и лампу накачки типа ИНПЗ-35. В качестве прозрачного теплоотвода от ближней к лампе части активного элемента использовалась лейкосапфировая пластина толщиной 1 мм, шириной 10 мм и длиной 70 мм с коэффициентом теплопроводности

= 35 Вт

м
-1 град
-1. В качестве теплоотвода для нижней части активного элемента использовалась алюминиевая пластина толщиной 5 мм, длиной 50 мм и высотой 15 мм. При использовании зеркального осветителя в виде отражающего покрытия на прижимной пластине использовалась посеребренная полоска, изолированная от прижимной пластины тонким (~0,1-0,2 мм) слоем герметика ВГО-1 для выполнения соотношения 0,5<
2/
1<1. Для осветителя с диффузно-отражающим покрытием на прижимную пластину со стороны контакта с активным элементом наносилось диффузно-отражающее покрытие из окиси цинка. Размеры пластины, количество слоев и тип покрытия выбирались с расчетом уравнения скорости теплоотвода от верхней и нижней части активного элемента.
Формула изобретения
Импульсно-периодический лазер, содержащий осветитель, внутри которого расположены активный элемент и лампа накачки, отличающийся тем, что верхняя часть осветителя содержит лампу накачки, а нижняя часть осветителя содержит активный элемент, теплоотводящую пластину, прозрачную для излучения накачки, прижимную пластину, при этом активный элемент выполнен пластинчатым и упруго прижат по всей длине нижней частью осветителя к теплопроводящей пластине, причем коэффициенты теплопроводности активного элемента

и прозрачной пластины
1, коэффициенты теплопередачи
1 верхней части активного элемента и
2 нижней части активного элемента, контактирующего с прижимной пластиной осветителя, связаны следующими соотношениями
1
2

, 0,5<
2/
1<1.о
РИСУНКИ
Рисунок 1,
Рисунок 2