Способ переработки смесей катионообменных и анионообменных смол, содержащих радиоактивные и токсичные элементы
Изобретение относится к охране окружающей среды и предназначено для сжигания смесей катионообменных и анионообменных смол, содержащих радиоактивные и токсичные элементы, на поверхности расплава стекла с фиксацией продуктов сжигания в стеклообразной матрице. Технический результат: повышение скорости, безопасности реализации способа и качества получаемого конечного продукта. Способ включает смешение смеси катионообменных и анионообменных смол со стеклообразователем, введение в полученную шихту углерода, обработку шихты с углеродом в "вихревом слое", их последующую подачу на поверхность расплава стекла с одновременной на нее подачей газообразного кислородсодержащего окислителя, выдержку расплава стекла вместе с продуктами термического разложения шихты с углеродом до гомогенизации и охлаждение до образования твердого монолитного стеклообразного продукта, пригодного для долгосрочного хранения.
Заявляемый способ относится к области охраны окружающей среды, а точнее к области переработки радиоактивных отходов с последующей фиксацией продуктов переработки в устойчивой твердой среде. Наиболее эффективно заявляемый способ может быть реализован при сжигании смесей радиоактивных катионообменных (КОС) и анионообменных (АОС) смол с фиксацией продуктов сжигания в стеклообразной матрице.
Известен способ обработки радиоактивных отходов [1], включающий механическое обезвоживание радиоактивных ионообменных смол (ИОС), смешение обезвоженных радиоактивных ИОС с соединением кальция, сушку смеси, ее термообработку при повышенном давлении и включение в цемент или битум для получения монолитных блоков, пригодных для долгосрочного хранения. Недостатком известного способа является: невысокое качество конечных продуктов, связанное с низкими прочностью и водоустойчивостью цементных блоков и низкой радиационной стойкостью блоков на основе битума. Известен способ переработки отработанных радиоактивных ионообменных смол [2] , включающий низкотемпературный нагрев радиоактивных ИОС, последующий их высокотемпературный нагрев и горячее прессование продуктов нагрева до получения монолитных брикетов. Недостатком известного способа является: невысокое качество конечного продукта, связанное с его низкой вследствие пористости водоустойчивостью и прочностью. Наиболее близким по технической сущности к заявляемому объекту является способ переработки смесей радиоактивных катионообменных и анионообменных смол путем их перевода в стеклокерамические материалы [3]. Сущность известного способа состоит в том, что смесь катионообменных и анионообменных радиоактивных смол смешивают со стеклообразователем, полученную шихту постепенно нагревают до 1250-1600oC, образовавшийся стеклорасплав охлаждают до получения твердого монолитного стеклообразного продукта, который затем вновь нагревают для кристаллизации и охлаждают до образования твердого стеклокерамического материала. В качестве стеклообразователя используют смесь, в которую обязательно входят SiO2, TiO2 и CaO, а также могут входить: Na2O, K2O, Al2O3; B2O3, Fe2O3, Cr2O3; BaO, Sr0, ZnO; ZrO2, SnO2; P2O5, Ta2O5, Nb2O5, причем наиболее близким составом смеси к аналогичному составу в заявляемом способе является стеклообразователь, содержащий в качестве компонентов: Na2O;CaO, B2O3, Fe2O3;
Al2O3;
SiO2;
TiO2. Недостатками известного способа являются:
повышенная опасность реализации способа, связанная с:
- повышенной летучестью радионуклидов и в первую очередь одного из наиболее опасных из них - Cs137 (переход в газовую фазу которого начинается при постепенном нагреве уже при 500oC [4]), из-за повышенных рабочих температур процесса;
- повышенным содержанием в отходящих газах вследствие постепенного нагрева, токсичных газообразных продуктов термического разложения органических основ и функциональных групп ИОС;
пониженное качество получаемого конечного продукта вследствие неоднородности его структуры, из-за возникновения хальмоза (нерастворимой в стекле сульфатной фазы), причиной которого является присутствие в составе КОС сульфоновых [-SO3H] функциональных групп;
повышенная длительность реализации способа. Преимуществами заявляемого способа являются повышение его безопасности, повышение качества получаемого продукта, а также повышение скорости его реализации. Указанные преимущества достигаются за счет того, что смесь КОС и АОС, содержащую радиоактивные и токсичные элементы, с остаточной влажностью не более 60 мас.%, смешивают со стеклообразователем, в полученную шихту добавляют углерод, шихту с углеродом обрабатывают в "вихревом слое" [5], после чего готовят расплав стекла с температурой 1100-1200oC и на его поверхность одновременно подают обработанную в "вихревом слое" шихту с углеродом и газообразный кислородсодержащий окислитель, расплав стекла вместе с продуктами термического разложения шихты с углеродом выдерживают до гомогенизации и охлаждают до образования твердого монолитного стеклообразного продукта, пригодного для долгосрочного хранения. В качестве стеклообразователя используют смесь, состоящую из NaNO3 - содержащего вещества, датолитового концентрата, глинистой породы и кремнеземсодержащей породы при следующем соотношении ингредиентов, мас.%:
NaNO3 - содержащее вещество - 35-45
датолитовый концентрат - 25-35
глинистая порода - 12-18
кремнеземсодержащая порода - 12-18,
причем NaNO3 - содержащее вещество используют в качестве источника Na2O, датолитовый концентрат - в качестве источника CaO, B2O3 и Fe2O3, глинистую породу - в качестве источника Al2O3, а кремнеземсодержащую породу - в качестве источника SiO2. В качестве NaNO3 - содержащего вещества используют очищенную натриевую селитру или упаренные жидкие радиоактивные отходы АЭС, в качестве глинистой породы - высокоглиноземистое сырье, бентонит, монтмориллонит, иллит, каолин, в качестве кремнеземсодержащей породы - кварц, кварцевый песок, диатомит, трепел, опоку, в качестве источника углерода - древесные, минеральные угли, активированные угли, графит или сажу. Массовое соотношение между смесью КОС и АОС и стеклообразователем составляет не более 4, а количество углерода составляет не менее 0,25


GКОС - масса КОС, имеющей сульфогруппы [-SO3H];
МВC - молекулярный вес углерода:
МВсг - молекулярный вес сульфогруппы [-SO3H];
Вышеуказанное количество углерода определяется из стехиометрического соотношения в соответствии с химической реакцией между сульфогруппой КОС и С:

В качестве газообразного кислородсодержащего окислителя используют воздух или кислород, причем количество кислорода в газообразном кислородсодержащем окислителе составляет не менее чем 21,25


GИОС - масса смеси КОС и АОС;
МВO - молекулярный вес кислорода;
МВМАТР - молекулярный вес сополимера стирол-дивинилбензола;
Вышеуказанное количество кислорода определяется из стехиометрического соотношения в соответствии с химической реакцией между сополимером стирол-дивинилбензола - [-C18H13-] и O2:

Повышение безопасности реализации заявляемого способа достигается за счет того, что вместо постепенного нагрева используют скачкообразный нагрев смеси КОС и АОС и углерода путем их подачи на поверхность предварительно приготовленного расплава стекла с температурой 1100-1200oC в условиях подвода газообразного кислородсодержащего окислителя. В результате скачкообразного нагрева при подводе газообразного кислородсодержащего окислителя органические основы предварительно измельченных и активированных в "вихревом слое" КОС и АОС подвергаются практически полному пламенному сгоранию с одновременным дожиганием в пламени токсичных газообразных продуктов до безопасных газообразных соединений. Нитрат натрия, в составе NaNO3 - содержащего вещества, разлагающийся при температурах свыше 350oC по реакции:

с одной стороны, как уже говорилось выше, является источником, необходимым для процесса стеклообразования Na2O, а с другой - газообразного кислорода, который в сочетании с подаваемым на поверхность расплава стекла газообразным кислородсодержащим окислителем обеспечивает поверхностно-объемный характер горения органических основ КОС и АОС. Кроме того в результате скачкообразного нагрева между кислыми токсичными (SO2, SO3, P2O5, HCl) и щелочными (NH3, Na+) газо- и парообразными продуктами разложения функциональных групп КОС (-SO3H, - OPO(OH)2, -COOH) и АОС (-N(CH3)2, - NH2, - NH, - CH2SH) в газовой фазе происходят реакции взаимной нейтрализации с образованием нетоксичных и неагрессивных соединений. Поверхностно-объемный характер горения органических основ КОС и АОС и взаимная нейтрализация продуктов разложения функциональных групп КОС и АОС обеспечивают повышение безопасности реализации способа. Использование в качестве стеклообразующих компонентов датолитового концентрата, глинистой породы, а также кремнеземсодержащей породы, имеющих в своем составе алюмосиликатные соединения, способные связывать радионуклиды цезия, стронция, церия и т.п. в нелетучие соединения, образующаяся на поверхности частиц КОС и АОС из присутствующего в шихте стеклообразователя пленка стекла, а также более низкие, чем в способе - прототипе, рабочие температуры процесса способствуют снижению степени улетучивания радионуклидов и токсичных элементов в газовую фазу, что также повышает безопасность реализации способа. При температуре менее 1100oC не происходит процесс стеклообразования из стеклообразующих компонентов, а при температуре более 1200oC не обеспечивается подавление улетучивания радионуклидов и токсичных элементов. Предварительная обработка смеси шихты с углеродом в "вихревом слое" обеспечивает практически идеальное перемешивание ее компонентов в сочетании с активацией их поверхностей, что обеспечивает полное обволакивание всех частиц КОС и АОС пленкой образующегося из стеклообразователя стекла, причем в случае, если количества компонентов стеклообразователя будут меньше их нижних пределов или больше их верхних пределов процесса, образования стекла из стеклообразователя происходить не будет. Кроме того в результате активации поверхностей компонентов смеси шихты с углеродом и повышения их дисперсности после обработки в "вихревом слое" достигается повышение скорости реализации заявляемого способа. Наличие углерода в условиях скачкообразного нагрева обеспечивает восстановление сульфогрупп в составе КОС до газообразной двуокиси серы, что повышает качество конечного продукта за счет предотвращения возникновения хальмоза, причем двуокись серы нейтрализуется в газовой фазе щелочными газо- и парообразными продуктами разложения функциональных групп АОС. Если содержание вводимого в смесь КОС и АОС углерода будет меньше 0,25





1. Заявка Германии N 41 37 947A1, МКИ5: G 21 F 9/12, C 02 F 1/00, оп. 19.05.93
2. Заявка Японии N 4 - 59600B4, МКИ5: G 21 F 9/30, оп. 22.09.92
3. Заявка Великобритании N 2 133 607A, НКИ: G 6 R 1 A 10, МКИ: G 21 F 9/16, 9/12, оп. 25.07.84
4. А.С.Никифоров, В.В.Куличенко, М.И.Жихарев, "ОБЕЗВРЕЖИВАНИЕ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ", Москва, Энергоатомиздат, 1985, стр. 71-72. 5. Д.Д. Логвиненко, О.П.Шеляков, "ИНТЕНСИФИКАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В АППАРАТАХ С ВИХРЕВЫМ СЛОЕМ", Киев, "ТЕХНИКА", 1976, стр. 48-65.
Формула изобретения
NaNO3-содержащее вещество - 35 - 45
Датолитовый концентрат - 25 - 35
Глинистая порода - 12 - 18
Кремнеземсодержащая порода - 12 - 18
в полученную шихту дополнительно вводят углерод в количестве не менее 0,25



