Способ бесконтактного измерения электрического тока
Изобретение может быть использовано при построении устройств для измерения постоянного, переменного и импульсного токов, в частности, в качестве датчиков тока в системах релейной защиты электроэнергетических объектов. В способе бесконтактного измерения электрического тока, заключающемся в том, что в ферромагнитном сердечнике с помощью нанесенной на него первичной обмотки с измеряемым током создают основной магнитный поток, с помощью нанесенной на упомянутый сердечник вторичной обмотки с компенсирующим током создают встречный магнитный поток, причем знак производной компенсирующего тока периодически изменяют, а о величине измеряемого тока судят по значению низкочастотной составляющей компенсирующего тока, дополнительно упомянутое периодическое изменение знака производной компенсирующего тока осуществляют при выходе мгновенного значения этого тока из зоны, ограниченной значениями I макс W1 / W2 + Hs L / W2, I мин W1 / W2 - Hs
L / W2, где I макс и I мин - граничные значения заданного диапазона измерения тока; W1 и W2 - количество витков соответственно первичной и вторичной обмоток; Hs - напряженность магнитного поля в ферромагнитном сердечнике, соответствующая границе его насыщения; L - длина средней магнитной силовой линии. Технический результат: обеспечение уменьшения аддитивной погрешности, повышение чувствительности, а также упрощение устройств, реализующих способ. 3 ил.
Изобретение относится к области измерительной техники и может быть использовано при построении устройств для измерения постоянного, переменного и импульсного токов, в частности, в качестве датчиков тока в системах релейной защиты электроэнергетических объектов.
Известен способ бесконтактного измерения постоянного и переменного тока, основанный на измерении магнитного потока, создаваемого измеряемым током, и преобразовании его в выходной сигнал, который пропорционален измеряемому току (см. , например, Наследов Д.Н. и Зотова Н.П. Прибор для измерения постоянных токов до 40 кА. - Электричество, 1961, N 3). Измеряемый ток создает в магнитопроводе, охватывающем проводник с током, пропорциональный ему магнитный поток, который пронизывает датчики Холла, расположенные в одном или нескольких зазорах магнитопровода. На выходе последних возникает напряжение Холла, пропорциональное магнитному потоку, а следовательно, и измеряемому току. Недостатком данного способа является низкая точность измерений, обусловленная погрешностями датчиков Холла. Известен также компенсационный способ бесконтактного измерения постоянных и переменных электрических токов (см., например, а.с. СССР N 292238, МКИ H 03 K 19/14, 1971 г. Открытия. Изобретения, N 4), основанный на измерении результирующего магнитного потока, образованного магнитными потоками измеряемого и компенсирующего тока, причем последний формируют из сигнала, пропорционального результирующему магнитному потоку. По значению компенсирующего тока судят о значении измеряемого тока. Данный способ использует условие практически полного равенства намагничивающих сил измеряемого и компенсирующего токов. Недостатками этого способа являются - аддитивная погрешность, обусловленная влиянием коэрцитивной силы материала магнитопровода и э.д.с. небаланса датчиков Холла; - низкая чувствительность устройств, реализующих способ, из-за малого уровня выходного сигнала датчиков Холла и размагничивающего действия зазоров в магнитопроводе; - сложность устройств из-за наличия датчиков Холла с цепями их питания. Наиболее близким к данному техническому предложению является способ бесконтактного измерения электрического тока, объединяющий компенсационный принцип измерения с принципом прерывистого (двухпозиционного) регулирования (см., например. кн.: Микропроцессорные гибкие системы релейной защиты / В.В. Михайлов, Е. В. Кириевский, Е.М. Ульяницкий и др.; - М.: Энергоатомиздат, 1988, стр. 208 - 209). Суть способа заключается в создании основного и компенсирующего магнитных потоков, пропорциональных измеряемому и компенсирующему токам, изменении знака производной компенсирующего тока после каждого изменения полярности разности результирующего и компенсирующего магнитных потоков и формировании выходного сигнала из низкочастотной составляющей компенсирующего тока. Недостатками указанного способа-прототипа являются- наличие аддитивной погрешности (погрешности нуля), обусловленной влиянием коэрцитивной силы магнитного материала сердечника из-за его перемагничивания по частным циклам петли гистерезиса, что приводит к неточности равенства намагничивающих и размагничивающих сил, а также влиянием аддитивной погрешности датчиков магнитного потока (э.д.с. небаланса датчиков Холла);
- низкая чувствительность устройств, реализующих способ, обусловленная малым уровнем выходного сигнала датчиков магнитного потока при изменении слабых токов из-за недостаточной чувствительности датчиков и наличия немагнитного зазора в магнитопроводе в местах их установки. Наличие указанных выше составляющих аддитивной погрешности ограничивает снизу порог чувствительности устройств уровнем абсолютного значения аддитивной погрешности;
- сложность устройств, реализующих способ, из-за необходимости использования датчиков магнитного потока, требующих дополнительного источника питания и встраиваемых в зазор магнитопровода, а также технологическая сложность выполнения этого зазора. Задачей предлагаемого технического решения является уменьшение аддитивной погрешности, повышение чувствительности, а также упрощение устройства, реализующего предлагаемый способ измерения. Решение задачи достигается тем, что в известном способе бесконтактного измерения электрического тока, заключающемся в том, что в ферромагнитном сердечнике с помощью нанесенной на него первичной обмотки с измеряемым током создают основной магнитный поток, пропорциональный измеряемому току, с помощью нанесенной на упомянутый сердечник вторичной обмотки с компенсирующим током создают встречный магнитный поток, причем знак производной компенсирующего тока периодически изменяют, а о величине измеряемого тока судят по значению низкочастотной составляющей компенсирующего тока, дополнительно, упомянутое периодическое изменение знака производной компенсирующего тока осуществляют при выходе мгновенного значения этого тока из зоны, ограниченной значениями
Iмакс W1/W2 + Hs

и
Iмин W1/W2 - Hs

где Iмакс и Iмин - граничные значения заданного диапазона измерения тока; W1 и W2 - количество витков соответственно первичной и вторичной обмоток; Hs - напряженность магнитного поля в ферромагнитном сердечнике, соответствующая границе его насыщения; L - длина средней магнитной силовой линии. Заявляемое техническое решение отличается от прототипа тем, что изменение знака производной компенсирующего тока осуществляют не по изменению полярности результирующего магнитного потока в ферромагнитном сердечнике, а по достижении компенсирующим током уровня, приводящего к насыщению сердечника. Моменты достижения такого уровня определяются по равенству мгновенных значений компенсирующего тока заданным значениям, обеспечивающим насыщение сердечника во всем диапазоне изменения измеряемого тока и равным
Iмакс W1/W2 + Hs

и
Iмин W1/W2 - Hs

где Iх


Uф - выходное напряжение формирователя 4;
iк.максW2 и iк.минW2 - максимальное и минимальное значения намагничивающей силы, создаваемой током iк, соответствующие моментам изменения производной тока iк. Реализация предлагаемого способа осуществляется следующим образом. Протекающий по первичной обмотке 2 измеряемый ток Iх создает в сердечнике 1 намагничивающую силу Ix





iк



где h(t) - мгновенное значение напряженности магнитного поля в сердечнике 1, изменяющееся во времени в процессе его перемагничивания;
L - длина средней магнитной силовой линии сердечника 1. Из этой формулы находим выражение для мгновенного значения компенсирующего тока iк:
iк = Iх W1 / W2 + L

Первое слагаемое этого выражения представляет собой среднее значение компенсирующего тока iк (низкочастотную составляющую при медленных изменениях тока Iх), который осуществляет размагничивание сердечника 1, и несет информацию о величине тока Iх без погрешностей. Второе слагаемое - это высокочастотная составляющая - ток пикообразной формы, осуществляющий циклическое перемагничивание сердечника 1. Ток iк, протекая через резистор 5, создает на нем пропорциональное падение напряжения Uвых, являющееся выходным сигналом устройства. Влияние высокочастотной переменной составляющей тока iк в выходном сигнале на выходе 6 может быть ослаблено известными методами, например LC-фильтрами. В связи с тем, что форма тока iк несет информацию о режиме перемагничивания сердечника 1, добиться перемагничивания сердечника по полному циклу для обеспечения полного размагничивания можно, осуществляя переключение полярности напряжения UФ формирователя 4 (а следовательно, и знака производной компенсирующей тока Iк) по признаку выхода значения компенсирующего тока Iк из зоны, ограниченной максимальным и минимальным значениями Iк.макс и Iк.мин, которые определяются диапазоном изменения тока Iх. Подставляя значения Iмакс и Iмин в выражение (1) и учитывая знак напряженности h(t), соответствующий токам iк.макс и iк.мин, находим:
iк.макс = Iмакс W1/W2 + Hs

iк.мин = Iмин W1/W2 - Hs

Формула изобретения
Iмакс W1 / W2 + Hs

и
Iмин W1 / W2 - Hs

где Iмакс и Iмин - граничные значения заданного диапазона измерения тока;
W1 и W2 - количество витков соответственно первичной и вторичной обмоток;
Hs - напряженность магнитного поля в ферромагнитном сердечнике, соответствующая границе его насыщения;
L - длина средней магнитной силовой линии.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3