Переносной цифровой измеритель больших постоянных токов
Изобретение можно использовать в электроизмерительной технике, в частности для поверки стационарных измерительных систем на токи свыше 100 кА без их демонтажа. С целью расширения функциональных возможностей в направлении увеличения предела измеряемых токов и снижения погрешностей измерения тока предлагается использовать в устройстве цифровой интегратор на основе преобразователя аналогового напряжения в число импульсов. Технический результат: повышается точность интегрирования, а в итоге улучшаются технические характеристики всего устройства. 3 ил. 1 табл.
Изобретение относится к области электрических измерений, в частности к измерениям больших постоянных токов без разрыва электрической цепи, и может быть использовано при периодическом или эпизодическом контроле режимов электрических цепей больших постоянных токов.
Заявляемое изобретение направлено на решение задачи, заключающейся в обеспечении периодической поверки стационарных измерительных систем токов свыше 100 кА, имеющих класс точности 0,2 и ниже, без демонтажа этих систем. Авторам не известны аналоги, которые могли быть использованы при решении этой задачи. Известен патент на переносной измеритель токов N 2006043 /Зыкин Ф.А.; Дивеев А. И. ; Казаков М.К.; Чистякова Т.О. (Бюл. N 1, 15.01.94.), который предполагалось использовать для измерений постоянных токов до 50 кА, и известна попытка использования этого изобретения на токи 150 кА научно-производственным концерном "Параметр" (г. Ульяновск). Изготовленный образец был испытан в Уральском НИИ метрологии и использован для поверки изготовленных стационарных измерительных систем постоянных токов на Волгоградском и Каменск-Уральском алюминиевых заводах. Испытания показали, что максимальная относительная погрешность устройства не превышала 0,07% (свидетельство о метрологической аттестации прилагается). Однако этот аналог не утвержден таким классом по причинам, указанным ниже. Наиболее близким по технической сущности к заявляемому изобретению является указанный аналог. У прототипа и заявляемого изобретения имеются следующие сходные существенные признаки. В прототипе и в заявляемом устройстве используется пояс Роговского на твердой основе и кнопка сброса информации. Обмотка пояса Роговского выдает информацию о величине постоянного тока в виде ЭДС в процессе охвата токоведущих шин поясом Роговского или его выносе, выходной сигнал пояса интегрируется, и выходное напряжение интегратора, пропорциональное измеряемому току, является информативным сигналом. Следует отметить, что при плотной, равномерной намотке пояса Роговского и малых размерах его сечения по сравнению с размерами токопровода и расстоянием от токопровода до пояса взаимная индуктивность M(t) не будет зависеть от длины и конфигурации пояса. Это вытекает из следующих рассуждений. Потокосцепление пояса складывается из потоков, пронизывающих каждый виток. Для kго витка магнитный поток определится выражением Фk=







В выражении (2) l - длина пояса. Таким образом, Mmax зависит только от сечения пояса и плотности его намотки. Как показали исследования и результаты эксплуатации, недостатками прототипа является снижение точности измерения и предела измеряемых токов вследствие следующих причин. По принципу действия прототипа в интеграторе, входящем в состав прототипа, необходимо использовать конденсатор большой емкости (несколько мкФ) при измерении токов выше 100 кА, что затрудняет применение прецизионных конденсаторов. Увеличение емкости конденсатора связано с необходимостью увеличения постоянной времени интегратора из-за возрастания времени измерения вследствие значительных размеров токопровода, а следовательно, и пояса. Кроме этого, в прототипе погрешности возникают из-за дрейфа нуля операционного усилителя, входящего в состав интегратора, что также в значительной степени сказывается при измерениях токов свыше 100 кА по вышеупомянутым причинам. Целью изобретения является расширение функциональных возможностей в направлении увеличения предела измеряемых токов и увеличения точности измерения, что позволит осуществлять поверку стационарных измерительных установок на рабочих местах без их демонтажа и транспортировки в специальные метрологические лаборатории, уменьшит трудоемкость поверки этих измерительных установок, что будет способствовать улучшению технологического процесса. Необходимо отметить, что решаемые задачи очень важны для совершенствования системы метрологического обеспечения измерений больших постоянных токов, поскольку состояние этой системы в нашей стране далеко даже от удовлетворительного, в частности, из-за отсутствия сети специальных поверочных лабораторий, что существенно усложняет проведение поверок. Учитывая также особенность цепей большого тока - непрерывность режима энергопитания, что затрудняет демонтаж измерительных установок, можно понять важность разработки переносных прецизионных измерителей больших токов. Для достижения поставленной цели заявляемое изобретение "Переносной цифровой измеритель больших постоянных токов" содержит пояс Роговского на разъемном неферромагнитном каркасе, саморазмыкающуюся кнопку сброса показаний, масштабный усилитель, цифровой интегратор, дешифратор и цифровой индикатор. Один зажим пояса Роговского соединен с нулевой шиной, второй - подключен ко входу масштабного усилителя. Выход масштабного усилителя соединен со входом цифрового интегратора, выход которого через дешифратор подключен ко входу цифрового индикатора. Совокупность указанных общих существенных признаков развиваются дополнительными признаками, изложенными в п. 2 формулы изобретения, которые уточняют структуру цифрового интегратора. Он содержит аналоговый интегратор, аналоговый инвертор, тактовый генератор, делитель частоты, счетчик импульсов, два компаратора, семь электронных ключей, два логических инвертора. Выход масштабного усилителя подключен к первому компаратору, который управляет ключами на входе счетчика и на инвертирующем входе второго компаратора. Выход масштабного усилителя также подключен ко входу аналогового инвертора и через первый ключ к инвертирующему входу второго компаратора. Выход первого компаратора подключен к управлявшему входу первого ключа и к первому управляющему входу пятого ключа на вычитающем входе счетчика импульсов. Выход первого компаратора через логический инвертор соединен с управлявшим входом второго ключа в цепи, соединяющей выход аналогового инвертора и инвертирующий вход второго компаратора, и с первым управляющим входом пятого ключа на суммирующем входе счетчика импульсов. Выход второго компаратора соединен со вторым и первым управляющими входами соответственно пятого и четвертого ключей на входе счетчика импульсов. Вход аналогового интегратора через шестой ключ соединен с положительным выводом стабильного источника питания. Выход тактового генератора через третий ключ, управляющий вход которого соединен с выходом делителя частоты, подключен через четвертый и пятый кличи ко входу счетчика. Вход делителя частоты соединен с выходом тактового генератора, а его выход - с управляющим входом шестого ключа и через логический инвертор - с управляющим входом седьмого ключа в обратной связи аналогового интегратора. Положительный вывод источника питания через саморазмыкающуюся кнопку подсоединен к зажиму сброса информации счетчика импульсов. По отношению к прототипу у заявляемого изобретения имеются следующие отличительные признаки. Обмотка пояса Роговского подключается к масштабному усилителю, который подсоединяется ко входу цифрового интегратора, заменяющего аналоговый интегратор прототипа. При этом достигается исключение погрешностей измерителя, вызванных дрейфом нуля операционного усилителя, как это имеет место в прототипе. Это позволяет неограниченно увеличить время измерения, что необходимо при измерениях токов свыше 100 кА. Частота тактового генератора влияет на точность работы цифрового интегратора, поэтому она во многом определяет точность работы измерителя в целом: чем выше частота, тем меньше методическая погрешность интегрирования. Как показали расчеты, методическая погрешность при частотах тактового генератора fтг = 100 кГц и делителя частоты fдч = 200 Гц не превышает 0,07% при длительности измерения t1 = 2 сек, а при fтг = 500 кГц (значения fтг и t1 те же) погрешность не превышает 0,006%. Таким образом оптимальным выбором частот тактового генератора и делителя частоты методическая погрешность предлагаемого устройства может быть снижена до весьма малых значений. Кроме этого, по характеру эта погрешность является систематической и при необходимости устраняется при градуировке устройства. По имеющимся у авторов сведениям совокупность существенных признаков, характеризующих сущность заявляемого изобретения, не известна из уровня техники, что позволяет сделать вывод о соответствии изобретения критерию "новизна". По мнению авторов сущность заявляемого изобретения не следует для специалистов явным образом из известного уровня техники, так как из него не выявляется вышеуказанное влияние на получаемый технический результат - новое свойство объекта - совокупности признаков, которые отличают от прототипа заявляемое изобретение, что позволяет сделать вывод о его соответствии критерию "изобретательский уровень". Совокупность существенных признаков, характеризующих сущность изобретения, в принципе может быть многократно использована при измерениях больших постоянных токов свыше 100 кА с высокой точностью без разрыва и отключения цепи измерения, что обуславливает достижение поставленной цели - расширение функциональных возможностей в направлении увеличения предела измеряемых токов и увеличение точности измерения, что позволяет сделать вывод о соответствии изобретения критерию "промышленная применимость". Сущность изобретения поясняется графическими материалами на которых изображено: на фиг. 1 - структурная схема устройства; на фиг. 2 - каркас пояса Роговского, охватывающий пакет шин с измеряемым током; на фаг. 3а - зависимости выходного напряжения масштабного усилителя u(t) и выходного напряжения аналогового интегратора uuвых(t); на фиг. 3б - сигналы, поступающие с выхода делителя частоты; на фиг. 3в - сигналы, поступающие на вход счетчика импульсов от тактового генератора. Интервал времени


где I - измеряемый ток;


заменяется алгебраической суммой

где интервал времени

K - коэффициент пропорциональности. Надо отметить, что в начале измерения при t = 0 напряжение u(t) = u(O) = 0. В конце измерения также u(t) = 0. В процессе измерения u(t) может изменяться по произвольному закону, в том числе в некоторые моменты может иметь и отрицательные значения. Это зависит от действий оператора. Однако процесс измерения производится медленно и частота выходного сигнала делителя 15 f = 1/




Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4