Способ исследования движения объекта
Способ исследования движения объекта относится к измерительной технике. В способе исследования движения объекта, включающем облучение исследуемого объекта когерентным излучением с длиной волны , формирование интерференционных сигналов, преобразование их в электрические сигналы, разделяют когерентное излучение на два луча - первый и второй, увеличивают оптическую длину пути второго луча на (2n-1)
/4, n = 1,2,3..., формируют интерференционные сигналы от обоих лучей, которые преобразуют в электрические сигналы, дифференцируют электрический сигнал первого или второго луча, находят сигнал, равный отношению продифференцированного электрического сигнала от одного луча к электрическому сигналу от другого луча, снимают спектральную характеристику найденного сигнала, амплитуды спектральных составляющих движения исследуемого объекта определяют по предложенному соотношению. По определенным амплитудам спектральных составляющих движения исследуемого объекта дополнительно получают форму движения объекта с помощью обратного преобразования Фурье, причем могут дополнительно производить операцию инвертирования. При этом можно инвертировать как продифференцированный сигнал до определения найденного сигнала, так и найденный сигнал до снятия спектральных характеристик, либо значения спектральных составляющих найденного сигнала после их снятия или значения амплитуд спектральных составляющих движения исследуемого объекта после их определения. Изобретение позволяет расширить диапазон измеряемых значений при повышении точности измерений. 4 з.п. ф-лы, 8 ил., 1 табл.
Изобретение относится к измерительной технике и может быть использовано для исследования движений в микроэлектронике и машиностроении.
Известен способ бесконтактного измерения колебаний объекта (А.С.СССР N262295. МКИ: G 01 H 9/00), заключающийся в том, что зондируют исследуемый объект ультразвуковыми колебаниями, принимают отраженный от этого объекта модулированный сигнал, смешивают зондирующий и отраженный сигналы, выделяют из суммарного сигнала две соседние допплеровские гармоники, по отношению мощностей этих гармоник определяют амплитуду колебаний, а по разности их частот - частоту колебаний объекта. Однако, в способе отсутствует возможность определения любой другой формы движения, кроме синусоидальных колебаний, а также гармоничности колебаний, величины амплитуды второй гармоники и накладываются ограничения на точность измерений амплитуды вибраций в связи с достаточно большой длиной волны. Известен также способ для определения амплитуды механических колебаний (патент ГДР N276989, МКИ: G 01 H 9/00), заключающийся в том, что линейно поляризованный, монохроматический, когерентный пучок света разлагают на два равных пучка, которые проходят взаимно перпендикулярно. При этом один пучок направляют на механический движущийся с неизвестной амплитудой объект, где он отражается. Второй пучок направляют на неподвижную поверхность, от которой он также отражается. При этом между двумя взаимно перпендикулярными компонентами этих пучков обеспечивают сдвиг фазы на 90o. Оба пучка накладывают один на другой и затем обрабатывают. Однако, с помощью указанного способа невозможно контролировать параметры негармонических вибраций, а также других форм движения. Известен также способ определения амплитуды вибраций объекта (Wei Jin, Li Ming Zang, Deepak Uttamchandam, Brian Culshaw, Appl.Opt.,v.30,N31,p. 4496-4499,1991), заключающийся в том, что лазерное излучение направляют в зону колебаний объекта и на опорное зеркало через делитель, из отраженных от них лучей формируют интерференционную картину, преобразуют ее в электрический сигнал и снимают его спектр. В способе предложено находить амплитуды четырех гармоник с частотами, кратными основной частоте колебания исследуемого объекта, с коэффициентом n = 1,2,3,4. Рассчитывают амплитуду колебаний объекта по формуле:














4 - устройство задержки части предметной волны (специальная стеклянная пластинка),
5 - исследуемый объект,
6 - пьезокерамическая пластинка,
7 - звуковой генератор,
8 и 9 - фотоприемники,
10 и 11 - усилители,
12 - ЭВМ,
13 и 14 - аналого-цифровые преобразователи,
15 - дифференциатор,
16 - делитель сигналов,
17 - спектроанализатор,
18 - делитель сигналов. На фиг. 2 представлен интерференционный сигнал, преобразованный в электрическую форму, от луча, распространяющегося без задержки, первого луча; а на фиг. 3 - интерференционный сигнал, преобразованный в электрическую форму, от луча, распространяющегося с задержкой, второго луча; на фиг. 4 показана производная электрического сигнала первого луча; на фиг. 5 приведена форма нового сигнала, построенного по отношению производной электрического сигнала первого луча к значению электрического сигнала второго луча; на фиг. 6 представлен спектр нового сигнала, а на фиг. 7 - спектр неизвестной функции движения объекта; на фиг. 8 показана восстановленная функция движения объекта, в таблице 1 приведены значения определенных амплитуд спектральных составляющих движения исследуемого объекта. Заявляемый способ заключается в следующем: когерентное излучение от лазера 1 с длиной волны




где

t - время, f(t) - функция, описывающая продольное движение объекта. Эти напряжения затем усиливают усилителями 10 и 11 и преобразуют в цифровую форму аналого-цифровыми преобразователями 13 и 14 для последующей обработки на ЭВМ 12. Дифференцируют первый сигнал дифференциатором 15 и определяют сигнал на его выходе, который можно представить в виде

в случае записи неизвестной функции движения объекта f(t) в виде интеграла Фурье

Находят сигнал на выходе делителя сигналов 16 S(t)

где

Находят спектр сигнала S(t) с делителя 16 и определяют его спектр с помощью спектроанализатора 17, реализованного на основе быстрого преобразования Фурье в ЭВМ. Определяют спектр функции движения объекта с помощью делителя сигналов 18, реализующего формулу (7).

Вариант дифференцирования сигнала второго луча аналогичен рассмотренному выше. Таким образом, определяют значения амплитуд спектральных составляющих движения объекта. По этим амплитудам судят о характере движения объекта. Способ позволяет кроме амплитуд спектральных составляющих движения объекта точно определить форму (траекторию) движения объекта. Для этого дополнительно проводят обратное преобразование Фурье для полученных значений амплитуд спектральных составляющих. Кроме того, в случае дифференцирования первого сигнала и n - четного или в случае дифференцирования второго сигнала и n - нечетного необходимо инвертирование. Причем его можно осуществить на разных стадиях способа, а именно: после снятия продифференцированного сигнала с дифференциатора 15 его инвертируют или инвертируют найденный сигнал после получения его с делителя 16. Можно также инвертировать значения спектральных характеристик найденного сигнала, снятых со спектроанализатора 17, или инвертировать амплитуду спектральных составляющих движения объекта после делителя 18. Инвертирование в необходимых случаях позволяет получить точную форму (траекторию) движения объекта с учетом направления движения (приближение или удаление). Пример. В качестве исследуемого объекта было использовано зеркало, специальным образом закрепленное на пьезокерамической пластинке 6, движение пластинки и зеркала возбуждалось звуковым генератором 7 (ГЗ-56/1). В качестве источника излучения использовался He-Ne лазер (ЛГН-113) с длиной волны 6328 A. Интерференционные сигналы регистрировались фотоприемниками 8 и 9 типа ФД-265, а затем усиливались усилителями низкой частоты 10 и 11 У4-28 и направлялись на аналого-цифровой преобразователь с двумя каналами 13 и 14, расположенный в ЭВМ. Процесс восстановления неизвестной функции движения объекта иллюстрируется фиг. 2 - фиг. 8. Значения восстановленных амплитуд спектральных составляющих

Формула изобретения



где c



по полученному спектру судят о характере движения объекта. 2. Способ по п.1, отличающийся тем, что по определенным выше амплитудам спектральных составляющих движения исследуемого объекта дополнительно получают форму движения объекта дополнительно получают форму движения объекта с помощью обратного преобразования Фурье, причем в случае дифференцирования электрического сигнала первого луча и n-четного или в случае дифференцирования электрического сигнала второго луча и n-нечетного дополнительно производят операцию инвертирования. 3. Способ по п.2, отличающийся тем, что после снятия продифференцированного сигнала его инвертируют. 4. Способ по п.2, отличающийся тем, что инвертируют найденный сигнал до снятия спектральных характеристик или значения спектральных составляющих найденного сигнала после их снятия. 5. Способ по п.2, отличающийся тем, что после определения амплитуд спектральных составляющих движения исследуемого объекта инвертируют их значения.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9