Устройство для измерения поверхностных характеристик
Устройство для измерения поверхностных характеристик относится к измерительной технике, а именно к измерению поверхностей и профилей с помощью интерферометрии. Устройство для измерения поверхностных характеристик содержит дифракционный интерферометр, содержащий изогнутую дифракционную решетку, установленную на опорном рычаге, который несет на своем другом конце щуп для контактирования с поверхностью. Контактирование возникает под действием электромагнитной катушки, действующей на якорь. Лазерный диод освещает дифракционную решетку для получения пары дифрагированных пучков первого порядка противоположного знака, которые отражаются от внутренних поверхностей призмы и объединяются с помощью ее центрального слоя, расщепляющего пучок, и пары светоделителей. Выходные сигналы светоделителей подаются в схему обработки сигнала, содержащую счетчик интерференционных полос и интерполятор. Счетчик интерференционных полос определяет пересечение нулевого уровня сигналов, а интерполятор поддерживает цифровую оценку фазы сигналов и обновляет оценку, когда фазовое различие между расчетным и входным сигналами превышает заданный порог. Интерполятор содержит цифровой счетчик, выход которого содержит разряды низкого порядка цифровых выходных сигналов, для которых выход счетчика интерференционных полос содержит разряды высокого порядка. Изобретение позволяет повысить механическую прочность, безопасность при измерениях и сделать устройство более универсальным. 41 з.п.ф-лы, 35 ил.
Изобретение относится к измерительной технике, а именно к устройству для измерения поверхностей и профилей с помощью интерферометрии.
Известно устройство для измерения поверхности или профиля объекта для получения его текстуры, шероховатости или формы. Одним из примеров такого устройства является измерительная система FORM TALYSURF (TM), 279-2/885-BOSM, поставляемая фирмой Rank Faylor Hobson Limited, P.O., Box 36, 2 New Star Road, Leicester LEY LJQ, UK. Это устройство содержит щуп или иглу, выступающую вниз для контактирования с подлежащей измерению поверхностью и установленную смежно одному концу опорного рычага, смонтированного шарнирно на поддерживающей конструкции. Поддерживающая конструкция смонтирована для линейного перемещения (или примерно линейного перемещения) по подлежащей измерению поверхности объекта и перемещается по поверхности по прямой с помощью системы привода. Опорный рычаг проходит вне шарнирного крепления и несет отражающую поверхность, определяющую один конец одного из двух оптических путей, по которому направлен источник направленного света (лазер). В исходном положении щупа над поверхностью длины двух путей одинаковы. Однако, когда высота поверхности изменяется, щуп под силой тяжести следует за поверхностью и отражающая поверхность на другом конце шарнирного опорного рычага перемещается, изменяя длину оптического пути одной из траекторий, таким образом, генерируя интерференционную картину. Подсчет числа интерференционных полос, которые проходят данное положение оптического детектора, дает меру смещения щупа. Поэтому предусматривается устройство подсчета интерференционных полос, проходящих постоянное положение детектора, и для снабжения из него выходным сигналом, представляющим собой смещение щупа над измеряемой поверхностью, в то время как конструкция щупа линейно перемещается по поверхности. Конечно, было бы возможно с тем же успехом перемещать поверхность, а не щуп. Для обеспечения измерения поверхности или профиля вращаемого объекта, например коленчатого вала или оси, объект устанавливается с возможностью вращения с помощью привода. Когда объект поворачивается, щуп измеряет окружность объекта, откуда может быть определен любой эксцентриситет или отклонение от требуемого профиля. Такое измерительное устройство требуется для получения очень высокой точности измерения положения щупа (а следовательно, высоты поверхности). С помощью описанного выше устройства может быть достигнута разрешающая способность порядка 10 нм. Другой важной характеристикой такого устройства является максимальное смещение, которое может измерить игла, оно должно быть целесообразно большим для измерения многих типов поверхности или профиля и, как правило, имеет порядок миллиметров. Полезным критерием характеристики такого измерительного устройства является "динамический диапазон", определяемый как диапазон R (мм) /разрешающую способность R /мм/. Предпочтительно, чтобы он был как можно более высок. Хотя указанное выше измерительное устройство обеспечивает превосходные характеристики, может возникнуть ряд проблем. Во-первых, используемый интерферометр Майкельсона измеряет разницу длины оптического пути между двумя оптическими путями. Она критически зависит от стабильности длины световой волны, в то время как изменения атмосферного давления и температуры могут вызвать изменения длины световой волны и, следовательно, привести к неправильным результатам измерения. Поскольку два оптических пути могут иметь сильно отличающиеся длины, источник света должен иметь очень большую длину когерентности; таким образом, обеспечение соответствующего источника света потребует дорогого и массивного типа лазера, требующего высоковольтного источника питания и характеризующегося значительным выделением тепла. В патенте США 3726595, фиг. 8 - 1, показано устройство для измерения поверхностных характеристик, в котором вместо этого используется дифракционный интерферометр. В дифракционном интерферометре световой луч освещает дифракционную решетку и посредством этого дифрагируется, давая пару дифрагированных пучков первого порядка (хотя могут быть использованы более высокие порядки). Два пучка отражаются так, чтобы переместиться на расстояние одинаковой длины и рекомбинироваться для обеспечения интерференционной картины. Когда дифракционная решетка перемещается вбок, путь каждого пучка остается постоянным, но фаза каждого пучка изменяется с тем, чтобы интерференционные полосы интерференционной картины смещались. Поэтому это движение интерференционных полос обеспечивает меру бокового перемещения дифракционной решетки. В патенте США 3726595 дифракционная решетка размещается перпендикулярно поверхности и несет щуп на своем сцепляющемся с поверхностью конце так, что, когда интерферометр перемещается горизонтально по поверхности, дифракционная решетка принудительно перемещается перпендикулярно поверхности, а полученное изменение интерференционной картины дает результат измерения положения щупа. Для этого устройства характерным является то, что дифракционная решетка должна принудительно перемещаться исключительно линейно поперек освещающего луча и линии, делящей пополам два дифрагированных упорядоченных пучка. Однако при измерении шероховатых или нерегулярных поверхностей или, в общем, поверхностей, содержащих возвышающиеся ребра, на которые натыкается щуп, этот способ установки щупа будет неудовлетворительным, поскольку, когда щуп контактирует с таким возвышающимся ребром, в щупе будут возникать напряжения сжатия, когда он перемещается по ребру, и это, во-первых, приведет к нарушению юстировки дифракционной решетки (разрушающему интерференционную картину) и, во-вторых, вызовет вибрацию щупа вследствие повышенного трения с поверхностью. Это приведет также к возникновению повышенных напряжений в креплении щупа. Для устранения этого недостатка устройство согласно патенту США 3726595 содержит щуп для контактирования с измеряемой поверхностью и движения вдоль нее и опору щупа, несущую щуп с возможностью вращательного движения щупа вокруг оси вращения. Однако наклон дифракционной решетки будет изменяться, когда щуп, а следовательно, дифракционная решетка будет подниматься и опускаться относительно поверхности. Это изменение будет либо препятствовать, либо смещать направление дифрагированных пучков, и то и другое будет делать устройство неэффективным. Поэтому в основе изобретения лежит задача создать универсальное устройство для измерения поверхностных характеристик, которое будет производить измерения с повышенной точностью. Поставленная задача решается тем, что в устройство для измерения поверхностных характеристик, содержащее щуп для контактирования с измеряемой поверхностью и движения вдоль нее, и опору щупа, несущую щуп с возможностью вращательного движения щупа вокруг оси вращения, согласно изобретению введен дифракционный интерферометр для измерения вращательного движения щупа, содержащий дифракционную решетку, расположенную на криволинейной поверхности и установленную на опоре щупа с возможностью совместного движения с щупом, при этом центр кривизны криволинейной поверхности расположен на оси, вокруг которой поворачивается щуп. В устройстве согласно изобретению дифракционная решетка может быть расположена на опоре щупа дальше от щупа, чем ось вращения. Устройство согласно изобретению может содержать фокусирующее средство для оптической коррекции дивергенции или конвергенции лучей, обусловленных кривизной дифракционной решетки. Устройство согласно изобретению может содержать источник света для освещения дифракционной решетки пучком света, причем дифракционная решетка является выпуклой относительно луча. В устройстве согласно изобретению источник света может быть выполнен в виде полупроводникового лазерного диода. В устройстве согласно изобретению источник света может содержать устройство, излучающее монохроматический свет, фильтруемый с помощью узкополосного фильтра. В устройстве согласно изобретению фокусирующее средство может содержать собирательную линзу между источником света и дифракционной решеткой. В устройстве согласно изобретению дифракционная решетка, освещаемая лучами от источника света так, чтобы сходились лучи, является выпуклой относительно луча, причем конвергенция источника света и дивергенция вследствие изогнутой дифракционной решетки такова, что дифрагируемые пучки, получаемые с помощью дифракционной решетки, параллельны. В устройстве согласно изобретению интерферометр может содержать средство для направления пары одинаковых дифрагируемых пучков одного порядка, но противоположных по знаку, в сумматор, формирующий их интерференцию. В устройстве согласно изобретению длины оптических путей двух пучков от дифракционной решетки до сумматора равны. В устройстве согласно изобретению направляющее средство может содержать две отражающие поверхности, при этом две отражающие поверхности могут содержать внешние поверхности одной призмы. В устройстве согласно изобретению геометрия призмы и показатель преломления являются такими, чтобы отражение от поверхности было полным внутренним отражением. В устройстве согласно изобретению отражающие поверхности призмы могут быть параллельны. В устройстве согласно изобретению геометрия призмы и показатель преломления могут быть такими, чтобы углы падения и отражения составляли 45o. В устройстве согласно изобретению сумматор может быть выполнен в виде полуотражающей внутренней поверхности призмы. В устройстве согласно изобретению указанная полуотражающая поверхность призмы может содержать слой, расщепляющий пучок. В устройстве согласно изобретению угол падения пучка на полуотражающую поверхность призмы может составлять примерно 45o. Устройство согласно изобретению дополнительно может содержать смещающее средство для перемещения щупа в заданном направлении. При этом заданное направление, в котором расположено смещающее средство для перемещения щупа, может быть направлением к измеряемой поверхности или направлением к заданному положению. Устройство дополнительно может содержать смещающее средство, предназначенное для приложения к щупу силы для демпфирования его вибраций. При этом сила, приложенная смещающим средством к щупу, зависит от его скорости. В устройстве согласно изобретению смещающее средство может содержать электромагнитный исполнительный механизм. При этом исполнительный механизм может содержать катушку, окружающую сердечник. В устройстве согласно изобретению смещающее средство может содержать пару действующих в противоположных направлениях смещающих приспособлений. Устройство согласно изобретению может содержать анализатор пучка для объединения разных поляризаций пары дифрагированных пучков для получения интерференции, содержащий разделитель, служащий для получения отраженного и прошедшего выходных пучков, и средство для формирования сигнала, реагирующего на разность сигналов между указанными выходными пучками. Средство, чувствительное к разности сигналов, может содержать пару опто-электрических преобразователей для генерирования электрических сигналов и средство, принимающее электрические сигналы и формирующее электрический выходной сигнал, пропорциональный их разности. Устройство согласно изобретению дополнительно может содержать интерполятор для обработки сигналов, получаемых от выхода интерферометра, для формирования выходного сигнала углового положения между интерференционными полосами выхода интерферометра, который содержит средство для генерирования расчетного сигнала от углового положения, средство для генерирования выходного сигнала в зависимости от расчетного сигнала, средство для генерирования из расчетного сигнала его функции, и средство управления генерированным расчетным сигналом в зависимости от генерированного сигнала функции и входного сигнала для уменьшения их разности. В устройстве согласно изобретению расчетный сигнал может быть цифровым сигналом, а средство генерирования функции может содержать цифроаналоговый преобразователь. В устройстве согласно изобретению расчетный сигнал может быть цифровым сигналом, а управляющее средство может содержать средство для изменения величины цифрового сигнала с помощью одиночного импульса, когда разностный сигнал превышает заданное пороговое значение для уменьшения разностного сигнала. В устройстве согласно изобретению заданное пороговое значение сигнала может быть постоянным, а разностный сигнал может быть по меньшей мере линейно зависимым от углового положения интерференционных полос. При этом разностный сигнал аппроксимирует синус разности между расчетным сигналом и входным сигналом. В устройстве согласно изобретению управляющее средство может быть выполнено с возможностью сохранения расчетного сигнала неизменным при отсутствии изменения входного сигнала таким образом, чтобы растянуть частотный диапазон устройства до постоянного сигнала. Устройство согласно изобретению может быть предназначено для приема пары входных сигналов, отличающихся по фазе. При этом пара входных сигналов может содержать синусоидальный и косинусоидальный сигналы, отличающиеся по фазе на 90o. Устройство согласно изобретению может содержать средство генерирования расчетных синусоидального и косинусоидального сигналов, средство для формирования сигналов произведения, соответствующих произведениям расчетных синусоидального и косинусоидального сигналов и входных косинусоидального и синусоидального сигналов, соответственно, и средство для генерирования из разности сигнала, представляющего разность углового положения между входными сигналами и расчетными сигналами, для управления средством генерирования расчетного сигнала. Средство генерирования расчетного сигнала согласно изобретению может содержать средство генерирования цифрового сигнала, а множительное средство может содержать множительные цифроаналоговые преобразователи. Устройство согласно изобретению может содержать средство для подсчета интерференционных полос или максимумов входного сигнала или сигналов. Устройство согласно изобретению может иметь средство синхронизации генератора расчетных сигналов из счетчика. Устройство согласно изобретению может содержать средство для приема нулевого среднего выходного сигнала интерферометра и средство для обнаружения пересечений его нулевых значений. Устройство согласно изобретению может иметь средство для приема второго входного сигнала фазы, отличной от первой, средство для определения из первого и второго сигналов фазы пересечения нулевого значения, средство для определения направления пересечения и средство для увеличения или уменьшения числа интерференционных полос в зависимости от направления и фазы. Предпочтительные варианты воплощения настоящего изобретения описаны ниже со ссылкой на чертежи, на которых показаны: на фиг. 1 схематически показан известный тип устройства для измерения поверхности; на фиг. 2 схематически показан известный тип устройства для измерения окружности; на фиг. 3 более подробно показан известный тип измерительного устройства, используемый в аппаратуре фиг. 1 и 2; на фиг. 4 схематически показаны элементы дифракционного интерферометра; на фиг. 5 схематически показано устройство предпочтительного варианта воплощения настоящего изобретения для использования в аппаратуре фиг. 1 или 2; на фиг. 6 более подробно схематически показана часть фиг. 5; на фиг. 7 - изображение в перспективе с пространственным разделением деталей части фиг. 6; на фиг. 8a и b иллюстрируются эффекты изогнутой дифракционной решетки и компенсирующих линз; на фиг. 9a - c иллюстрируются выходные сигналы, формируемые устройствами фиг. 6 и 7;на фиг. 10 схематически показана дифракционная решетка для применения в варианте воплощения фиг. 5 - 7;
на фиг. 11 схематически показано поперечное сечение через часть поверхности дифракционной решетки, показанной на фиг. 10;
на фиг. 12 схематически показано получение дифракционной решетки фиг. 10;
на фиг. 13 схематически показана дифракционная решетка, получаемая с помощью способа, поясняемого на фиг. 12;
на фиг. 14 - выполненный в точном масштабе вид призмы, используемой в устройстве, показанном на фиг. 5 - 7;
на фиг. 15 схематически иллюстрируется первый этап настройки устройства, показанного на фиг. 6;
на фиг. 16 иллюстрируется второй этап настройки устройства, показанного на фиг. 6;
на фиг. 17 схематически показана более подробно часть фиг. 6 и 7 в соответствии с предпочтительным вариантом воплощения настоящего изобретения;
на фиг. 18 показан альтернативный вариант воплощения части, показанной на фиг. 17;
на фиг. 19 показан дополнительный вариант воплощения части, показанной на фиг. 17 и 18;
на фиг. 20 схематически показан первый альтернативный вариант воплощения устройства, показанного на фиг. 5 - 7;
на фиг. 21 схематически показан второй вариант воплощения устройства, показанного на фиг. 5 - 7;
на фиг. 22 схематически показан третий альтернативный вариант воплощения устройства, показанного на фиг. 5 - 7;
на фиг. 23 схематически показан четвертый альтернативный вариант воплощения устройства, показанного на фиг. 5 - 7;
на фиг. 24 схематически показан пятый альтернативный вариант воплощения устройства, показанного на фиг. 5 - 7;
на фиг. 25 схематически показана первая схема обработки сигнала для использования с показанными выше вариантами воплощения;
на фиг. 26 схематически показана вторая выходная схема обработки сигнала для использования со схемой, приведенной на фиг. 25;
на фиг. 27 более подробно показана структура счетчика, составляющая часть схемы, приведенной на фиг. 26;
на фиг. 28 более подробно показана часть схемы, приведенной на фиг. 27;
на фиг. 29a - f схематически показаны сигналы в точках схемы, приведенной на фиг. 28;
на фиг. 30 более подробно показана часть схемы, приведенной на фиг. 29;
на фиг. 31 схематически показана общая структура схемы интерполятора, составляющая часть схемы, приведенной на фиг. 26;
на фиг. 32 более подробно показана часть схемы, приведенной на фиг. 31;
на фиг. 33 схематически показана структура интерполятора в соответствии с первым вариантом воплощения;
на фиг. 34 схематически показана структура интерполятора в соответствии с предпочтительным вариантом воплощения настоящего изобретения вместе со схемой счетчика, и
на фиг. 35a - f схематически показаны сигналы в различных точках схемы, приведенной на фиг. 34. Устройство для измерения поверхностных характеристик
Из фиг. 1 видно, что система измерения поверхности, в общем, может содержать опорную подставку 100, содержащую основание 100a и стойку 100b, на которой монтируется перемещающийся модуль 110. Перемещающийся модуль может быть установлен на стойке 100b в различных вертикальных положениях. Из перемещающегося модуля 110 выступают опорный элемент или рычаг 120, несущий направленную вниз иглу или щуп 130, содержащий штырь с коническим концом. Для измерения линейного профиля поверхности объекта 140 перемещающийся модуль 110 обеспечивается прецизионным двигателем для перемещения опорного рычага 120 и щупа 130 линейно внутри по объекту 140. Перемещающийся модуль 110 обеспечивается выводом 150 для передачи сигналов в соответствующем формате на дисплей или устройство для обработки, например, терминал компьютера или рабочее место 160. Эти сигналы, как правило, содержат сигнал, представляющий высоту щупа 130 (а следовательно, высоту поверхности объекта 140) и расстояние по объекту, на которое двигатель перемещает щуп. Из фиг. 2 видно, что для измерения эксцентриситета или окружности, например валов, перемещающийся модуль 110 не требует двигателя линейного привода; вместо этого предусматривается двигатель для вращения объекта 140, а также вывод 170, представляющий положение поворота объекта. Интерферометр из предшествующего уровня техники
Как следует из фиг. 3, перемещающийся модуль 110 в известном интерферометре содержит гелий-неоновый лазер 111, вал 112, расположенный параллельно измеряемой поверхности, как правило, горизонтальный, модуль каретки 113, содержащий двигатель, сцепляющийся с валом 112 (через редуктор), датчик положения каретки (не показан) для генерирования сигнала, представляющего положение каретки 113 на валу 112, и передающую трубку 114, образующую с кареткой 113 относительно массивный светонепроницаемый корпус. Светопроводы 115a, 115b направляют луч из лазера 111 в передающую трубку 114. Игла 130 смонтирована на конце опорного рычага 120, который установлен с возможностью вращения в приемной трубке 114 с помощью оси вращения 121. Опорный рычаг 120 выступает за ось вращения 121, на другом конце рычага 120 монтируется рефлектор 122, содержащий ребристый отражатель. Как показано, ребристый отражатель определяет конец одного плеча интерферометра Майкельсона, который не требует дополнительного описания, и светоделитель, а пластина четверти волны 123 приспособлена для обеспечения пары выходных сигналов, разнесенных по фазе на 90o. Эти сигналы подаются в соответствующие фотоэлектрические детекторы, которые обеспечивают соответствующие синусоидальный и косинусоидальный электрические сигналы для подсчета интерференционных полос. Масса лазера и оптической системы, которые потребуются для этого вида интерферометра, очевидны из фиг. 3. Когда щуп 130 перемещается по поверхности объекта 140 с помощью каретки 113, перемещающей вал 112, щуп под силой тяжести прижимается к поверхности, чтобы вместе с поверхностью подниматься и опускаться; рефлектор 122, соответственно, опускается и поднимается, изменяя длину пути интерферометра Майкельсона и вынуждая интерференционные полосы перемещаться за узлом светоделителя 123 и изменять сигналы из детектора. Сигналы детектора обрабатываются дисплейным или выходным устройством 160 для получения изображения или соответствующих данных, относящихся к измеряемому профилю. Дифракционный интерферометр
Краткое описание применения известного типа дифракционного интерферометра для определения местоположения дано со ссылкой на фиг. 4. В предшествующем уровне техники дифракционная решетка 200 содержит пластину со множеством параллельных прямых выступов, разнесенных по поверхности друг от друга на период d, определяющий дифракционную решетку. Дифракционная решетка 200 подвижна в направлении, перпендикулярном линии выступов в плоскости дифракционной решетки. Дифракционная решетка 200 освещается источником света 210. Если материал дифракционной решетки прозрачен, оснащение может быть с другой стороны пластины, на которой расположена дифракционная решетка. Предпочтительно, чтобы источник света 210 был лазером, хотя, поскольку нет необходимости большой длины когерентности, можно использовать другой коллимированный источник, имеющий строго определенную частоту. Когда шаг между линиями дифракционной решетки 200 и длина волны света из источника света 210 одного порядка, будет иметь место дифракция, например, при длине волны 670 нм (производимой лазерным диодом) и при шаге дифракционной решетке или периоде, равном 1/1200 мм = 833 нм, производится пара сильных пучков +1 и -1 первого порядка при углах +/-






На фиг. 5, которая, в общем, соответствует фиг. 3 и на которой одинаковые элементы обозначены одинаковыми ссылочными номерами, перемещающийся модуль 110 содержит горизонтальный вал 112 и каретку 113, установленную с возможностью перемещения по валу 112 двигателя (например, двигателя постоянного тока, осуществляющего привод через редуктор). Щуп или игла 130 предусмотрен вблизи конца опорного элемента или рычага 120, установленного с помощью шарнирной опоры 121 в массивный узел передающего корпуса 114 с кареткой 113. А также обеспечивается схемой обработки сигнала 155, принимающей электрические сигналы из корпуса 114, и порт выхода 150, обеспечивающий выходные сигналы из схемы обработки сигнала 155. Кроме того, обеспечивается, но не показывается для ясности, источник питания, шины управления двигателем каретки и выходная схема положения, обеспечивающая сигнал, представляющий положение каретки на валу 112, вместе с шинами источника питания к корпусу 114 и схеме обработки сигнала 155. Из фиг. 6 следует, что в корпусе 114 установлен источник свети 310, содержащий лазерный диод, имеющий длину волны приблизительно 670 нм, и коллимирующие линзы в луче. Опорный рычаг 120 выступает за шарнирную опору 121 частью 123, на конце которой монтируется оптический компонент, имеющий изогнутую поверхность, кривизна которой совпадает с кривизной дуги окружности, центр которой находится в шарнирной опоре 121. На изогнутой поверхности установлена дифракционная решетка, содержащая множество параллельных дифрагирующих элементов, наклоненных параллельно к шарниру 121. Свет от источника света 310 направляется прямо через призму 317, перпендикулярно к поверхности дифракционной решетки 300. Два дифрагированных пучка первого порядка, произведенных дифракционной решеткой 300, проникают в призму 317, описываемую более подробно ниже, которая обеспечивает два выходных пучка, каждый из которых проходит через соответствующий выходной анализатор 340a, 340b, содержащий призму светоделителя. Одной призме светоделителя 340b предшествует пластина четверти длины волны 350. На двух сторонах каждого светоделителя-анализатора 340a, 340b размещаются соответствующие детекторы 341a, 341b, 342a, 342b (на фиг. 6 не показаны). Каждый детектор содержит фотодиод, чувствительный к амплитуде падающего на него света, для формирования соответствующего электрического выходного сигнала. На пути между источником света 310 и дифракционной решеткой 300 также установлена линза 318, служащая для сведения колимированного луча из источника света 310 так, чтобы уменьшить дивергенцию, производимую кривизной дифракционной решетки 300, как более подробно описывается ниже. Кроме того, установлено соединенное с опорным рычагом 123 прижимное устройство 400, содержащее линейную электромагнитную катушку 410, окружающую линейный магнитный якорь или полюсный наконечник 420, соединенный с опорным рычагом 123 так, чтобы прикладывать к нему тянущее или толкающее усилие в соответствии с прикладываемым к катушке током. Период дифракционной решетки и ее расстояние от шарнира 121 должны быть соотнесены в некотором отношении, поскольку отношение перемещения измерительного средства к смещению щупа диктуется отношением плечей рычага 120 и 123 или, другими словами, радиальных смещений щупа 130 и поверхности дифракционной решетки 301. Период дифракционной решетки должен до некоторой степени определяться длиной волны используемого источника света и ограничениями способа, используемого для изготовления дифракционной решетки. Для данного размера дифракционной решетки расстояние, преобразованное с помощью дифракционной решетки (а следовательно, число интерференционных полос, генерируемых с помощью этого преобразования) относительно расстояния, пройденного щупом, пропорционально к их соответствующим расстояниям от шарнира 121. По этой причине желательно иметь относительно длинное плечо рычага 123. С другой стороны, если рычаг 123 слишком велик, инерция относительно шарнира 121 тормозит время реакции измерительного средства. В иллюстрируемом варианте исполнения плечо 123 (от шарнира до поверхности дифракционной решетки 301) выбирается равным приблизительно половине длины опорного рычага 120. Для измерения поверхности длина опорного рычага 120, как правило, составляет 60 мм. Далее со ссылкой на фиг. 7 более подробно описана работа устройства, показанного на фиг. 6. На лазерный диод 311 подается питание для обеспечения выходного лазерного луча, который коллимируется с помощью коллиматорной линзы 312. Как правило, луч, производимый лазерным диодом и коллиматорной линзой, имеет ширину приблизительно равную 2 мм. Коллимированный луч проходит через прозрачную пластину 319 полуволновой толщины, предусмотренную для регулирования направлений поляризации пучка. Луч света направляется через линзу 318 цилиндрической формы, которая обеспечивает схождение коллимированного луча. Из фиг. 8a следует, что при отсутствии цилиндрической линзы 318 коллимированный луч будет давать расходящиеся дифрагированные выходные пучки при дифрагировании выпуклой изогнутой дифракционной решеткой 300. С помощью цилиндрической линзы 318 обеспечивается соответствующее схождение входного луча с тем, чтобы дифрагированные пучки из дифракционной решетки были коллимированными, как показано на фиг. 8b. Линза 318 может также корректировать какое-либо расхождение или схождение пучка из источника света 310. Затем луч падает на нормали на торцевую поверхность призмы 317, проходит вдоль центральной оси симметрии призмы 317 и сталкивается по нормали с поверхностью дифракционной решетки 300. Поскольку поверхность 301, несущая дифракционную решетку, размещается на цилиндрической поверхности, имеющей центр в шарнире 121, часть поверхности 301, с которой сталкивается луч света (или более точно, касательной к поверхности) всегда перпендикулярна к лучу света, независимо от ориентации шарнирного рычага 123 относительно шарнира 121. Если дифракционная решетка сформирована на плоской поверхности, угол, образованный дифракционной решеткой будет смещать луч света на расстояние, равное расстоянию между источником света 310 и призмой 317 при повороте вокруг шарнира 121. Пара дифрагированных пучков первого порядка формируется под углом




В варианте воплощения, поясняемом на фиг. 10, дифракционная решетка 300 содержит стеклобрус, нижняя поверхность которого является приблизительно прямоугольной, например, имеющей размеры 6 х 4 мм, а верхняя поверхность которого, полученная путем шлифования или литья, имеет цилиндрический профиль радиусом, соответствующим высоте бруса (как правило, 5 мм), плюс длина плеча 123, на котором он установлен. Он может составлять, например, 30 мм. Из фиг. 11 следует, что на своей изогнутой поверхности брус несет дифракционную решетку, содержащую рисунок выступов, разнесенных с периодом, как правило, 0,8333 мкм (1/1200 мм). Для обеспечения интенсивных дифрагированных пучков первого порядка предпочтителен синусоидальный профиль. Для обеспечения отражающей дифракционной решетки поверхность выступов покрывается отражающим слоем, например, алюминием. Из фиг. 12 следует, что один способ получения такой дифракционной решетки заключается в нанесении на изогнутую поверхность заготовки стекла слоя отверждающегося на свету соединения и направлении на него взаимно наклонных лазерных лучей, имеющих длину волны порядка требуемой дифракционной решетки. Этот голографический способ дает четкую интерференционную картину с синусоидальным распределением интенсивности и позволяет получить соответствующую интерференционную картину экспонирования в светочувствительном слое. После завершения экспонирования поверхность подвергается травлению или отмыванию для удаления либо экспонированных, либо неэкспонированных областей светочувствительного слоя, оставляя рисунок выступов. Затем на профилированную поверхность, содержащую выступы, с помощью любого приемлемого процесса может быть нанесено алюминиевое покрытие. В альтернативном способе рисунок выступов может использоваться в качестве маски, через которую выполняют селективное травление. Из фиг. 13 следует, что, когда используется эта технология, период полученной изогнутой дифракционной решетки будет абсолютно правильным только на вершине подложки и будет немного увеличиваться по направлению к краям компонента; в приведенном примере, если период в центре составляет 0,8333 мкм, период на краях равен 0,8372 мкм (приблизительно на 0,5% больше). Поскольку ширина луча имеет порядок 2 мм, изменения промежутков дифракционной решетки, увеличивающиеся для каждого дифрагированного пучка являются частью 1%, которая частично ухудшает характеристики дифракционной решетки. Увеличение периода дифракционной решетки в направлении к краям дифракционной решетки также немного смещает угол дифракции. Однако, поскольку углы сдвигаются для обоих дифрагированных пучков, они продолжают иметь одинаковую длину пути и совпадать в призме и, таким образом, этот эффект является незначительным при условии, что оптические компоненты и детекторы все имеют конечную протяженность. Наконец, увеличение периода дифракционной решетки в направлении к ее концам делает соотношение между числом интерференционных полос, обнаруженных детекторами, и углов, на которые поворачивается дифракционная решетка, немного нелинейным в направлении к краям. Однако соотношение между вертикальным движением щупа и поворотом дифракционной решетки в противоположном направлении является нелинейным, так что этот эффект частично смягчается. Любая остаточная нелинейность может быть хорошо измерена и охарактеризована для данных размеров измерительного средства или получена путем выполнения калибрования измерительного средства. Просто обеспечить схему коррекции для корректирования выходных сигналов, получаемых из интерферометра, как более подробно описано ниже, или же корректирование может быть выполнено с помощью компьютера или другого устройства 160, с которым соединяется измерительное средство. Независимо от этого ожидается, что характеристики устройства могут быть улучшены путем получения изогнутой дифракционной решетки 300, в которой изменение периода уменьшается меньше указанного уровня (а предпочтительно исключается вообще). Призма 317
Конструкция призмы 317 описана со ссылкой на фиг. 14. Призма симметрична относительно слоя 335, расщепляющего пучок, и содержит пару наклонных боковых сторон 320a, 320b и базовую и верхнюю поверхности 360, 361, перпендикулярные к расщепляющему пучок слою. По глубине, фиг. 14, призма 317 предпочтительно равна или немного шире дифракционной решетки 300; т. е. , по меньшей мере 4 мм глубиной. Пара выходных плоскостей 370a, 370b предусматривается под углом к центральной плоскости 335 так, чтобы быть перпендикулярными к пучку, полностью внутри отраженному от противоположных параллельных поверхностей 320a или 320b, через точку в центральной плоскости 335. Удобно, когда призму изготавливают из двух компонентов, соответственно, над и под центральной плоскостью 335, показанной на фиг. 14, и собирают вместе по центральной плоскости 335. Предпочтительно, чтобы материалом призмы было стекло вследствие стабильности размеров и простоты производства, например, с показателем преломления 1,51. В этом случае, для взаимодействия с дифракционной решеткой, имеющей период d = 0,833 мкм, чтобы угол дифракции составлял



В одном варианте воплощения корпус передающей трубки 114 выполняется в виде двух частей корпуса 114a, 114b. Первая часть 114a включает в себя лазерный источник света и призму светоделителя 317. Вторая часть 114b включает в себя дифракционную решетку 300 и шарнирное крепление 121 для опорного рычага 123. Призма 317 жестко устанавливается в первой части корпуса 114a, а лазер и линзы 311, 312 и полуволновая пластина 319 монтируются в ней так, чтобы дать возможность ограниченного перемещения во всех трех плоскостях и поворота вокруг оси. Первый этап - центрирование светового луча из лазера по центральной оптической оси призмы 317. Для достижения этого первая часть корпуса 114a монтируется в зажимное приспособление как настроечное телескопическое устройство 1000 с автоматическим отражательным средством и настроечной окулярной шкалой по осям x и y. Цилиндрическая линза 318 вначале отсутствует в узле. С помощью автоматической отражательной настройки телескопического устройства 1000 корпус 114a настраивается в зажимном приспособлении так, чтобы базовая поверхность 360 призмы 317 была перпендикулярна оси телескопа. Затем положение корпуса 114a в плоскости, перпендикулярной оси телескопа (плоскости x/y), регулируется до тех пор, пока центр поверхности призмы 360 не совместится с осью телескопа. Затем телескоп фокусируется на стороне 360 призмы. Включается лазер 311, дающий эллиптическое пятно луча. Лазер поворачивается до тех пор, пока эллипс не ляжет в плоскость x/z. Затем телескоп 1000 фокусируется на бесконечность. После этого положение лазера 312 в корпусе 114 регулируется в направлении x и y до тех пор, пока пятно света из лазера 312 не достигнет центра шкалы телескопа 1000. Затем лазер 312 закрепляется по месту в корпусе 114a, например, путем приклеивания. После этого цилиндрическая линза 318 вводится в корпус 114a в пределах пути пучка лазерного луча и его положение в направлении y регулируется до тех пор, пока линия фокуса наблюдается телескопом 1000. Затем юстировка линзы 318 регулируется до тех пор, пока пучок не ляжет по оси x шкалы телескопа. Теперь цилиндрическая линза 318 правильно размещается и приклеивается или другим способом крепится по месту. Первая часть корпуса 114a настроена правильно. Следующий этап - собрать две части 114a, 114b. Две части 114a, 114b соединяются с помощью соединительного механизма, который вначале позволяет некоторое перемещение в направлениях x и y и поворот вокруг оси z. Например, две части могут иметь обращенные друг к другу фланцы, упруго соединяемые вместе. Вторая часть корпуса 114b монтируется в зажимном приспособлении и положение первой части 114a регулируется в направлении x, в то время как пятно лазерного луча наблюдается до тех пор, пока луч не установится по центру дифракционной решетки 300. Один из светоделительных анализаторов 340a удаляется, и два пучка соответственно отраженный от и пропущенный через расщепляющий пучок слой 335 наблюдаются либо визуально на куске картона, либо с помощью измерителя мощности светового излучения. Полуволновая пластина 319 поворачивается до тех пор, пока интенсивности этих двух пучков не станут равными. Часть корпуса 114b затем смещается в направлении y до тех пор, пока два пучка не совместятся в направлении y. В этой точке лазерный луч сталкивается перпендикулярно с поверхностью дифракционной решетки 300. Затем часть корпуса 114b поворачивается вокруг оси для совмещения линий дифракционной решетки со светоделительной призмой. Эта часть корпуса поворачивается до тех пор, пока два пучка, отображаемые на куске картона, не станут пересекающимися. Теперь эти два пучка должны интерферировать и при перемещении иглы или щупа 130 должны наблюдаться светлые и темные интерференционные полосы. Если четких интерференционных полос не наблюдается, повторяются приведенные выше этапы настройки в направлении y и поворота вокруг оси z. Когда четкие интерференционные полосы видны, светоделительная призма анализатора 340a приклеивается по месту еще раз и выводы пары детекторов 342a, 342b соединяют с осциллографом. Затем щуп 130 смещается и на осциллографе наблюдаются генерируемые интерференционные полосы; при необходимости для улучшения амплитуды интерференционных полос регулируется полуволновая пластина 319, а затем приклеивается, по месту наблюдаются фазы двух выходов детекторов и пластина четверти волны 350 поворачивается до тех пор, пока не будет получено правильное 90o фазовое различие; затем пластина четверти волны 350 приклеивается по месту. После этого две части корпуса 114a, 114b жестко соединяются между собой, как правило, с помощью клея и теперь средство измерения полностью настроено. Прижимающее устройство 400
Из фиг. 17 следует, что в этом варианте воплощения оказывающая давление или принудительная сила, прилагаемая к щупу 130, обеспечивается с помощью силового привода, а не с помощью силы тяжести как в предшествующем уровне техники. Силовой привод 400 содержит электрический исполнительный механизм, состоящий из линейной катушки 410, окружающей полюсный наконечник или якорь 420, имеющий стержень, жестко соединенный с опорным рычагом 123 внутри корпуса 121. Катушка 410 может быть возбуждена для обеспечения постоянной принудительной силы через полюсный наконечник 420 к рычагу 123 и, следовательно, щупу 130, но при необходимости ток возбуждения может также непрерывно регулироваться для изменения прилагаемого усилия, например, в ответ на сигнал полученный от тензометра или аксельрометра, чувствительных к нагрузке или ускорению щупа. Может быть желательным обеспечение средства для измерения прикладываемой силы вручную так, чтобы, например, относительно большая сила прикладывалась по существу к жестким измеряемым поверхностям (для обеспечения с ними хорошего контактирования), а относительно небольшая сила - при измерении упруго или пластически деформируемых поверхностей, чтобы избежать их деформации или разрушения. Особенно удобно регулировать оказывающую давление силу электрически, но механическая пружина (растяжения или сжатия) или пневмопривод, например, могут заменить катушку 410 и полюсный наконечник 420. Путем приложения тока в направлении, противоположном тому направлению, которое используется для оказания давления на щуп, щуп может быть поднят с рабочей поверхности, чтобы дать возможность вернуть его после цикла сканирования без разрушения щупа или поверхности. Также очевидно, что этот аспект настоящего изобретения не ограничивается случаем его применения для интерферометрических приборов измерения поверхности, но может быть в равной степени использован, например, для индуктивных измерительных приборов типа звукоснимателя, включающих в себя щуп. Для воздействия на опорный рычаг 120 было бы лучше выполнить средство, оказывающее давление 400, до шарнира 121, чем воздействовать на опорный рычаг после шарнира 121; однако это уменьшит эффективную длину рычага 120, что ограничивает полезность устройства при зондировании закрытых поверхностей, например, труб или отверстий. На фиг. 18 показано альтернативное устройство, в котором два действующих в противоположных направлениях исполнительных механизма 400a, 400b, содержащих в этом варианте воплощения катушки 410a, 410b, возбуждаемые в противоположных направлениях, и соответствующие полюсные наконечники 420a, 420b присоединяются к противоположным сторонам опорного рычага 123. Если возбуждение катушек 410a, 410b регулируется так, чтобы бездействующие усилия двух исполнительных механизмов 400a, 400b находились в равновесии (или предпочтительно, чтобы силы, прикладываемые вверх и вниз с помощью исполнительных механизмов 400a, 400b и сила тяжести были уравновешены), щуп 130 будет принудительно возвращаться в среднее свободное или нулевое положение. Этот вариант воплощения находит применение в устройстве для измерения поверхностей, которые могут быть расположены либо выше, либо ниже устройства, или перпендикулярно к нему. Из фиг. 19 следует, что в другом варианте воплощения исполнительный механизм размещается для обеспечения активного демпфирования рычага иглы; среди других преимуществ это уменьшает опасность вибраций из-за внешних воздействий, например, случайных ударов на устройство. Поэтому на катушку 410 подается ток, который содержит составляющую, пропорциональную скорости изменения смещения щупа, и такой полярности, чтобы вызывать усилие, которое бы посредством катушки 410 препятствовало смещению курсора. Например, ток может обеспечиваться с помощью первого источника тока 430, обеспечивающего постоянный ток Im, и второго источника тока 440, дающего ток, который, как указывалось выше, пропорционален скорости изменения сигнала смещения щупа. Например, цифровой выходной сигнал, представляющий смещение щупа, может быть получен из выхода схемы обработки сигнала, как более подробно обсуждается ниже, и преобразован в соответствующий аналоговый сигнал с помощью цифроаналогового преобразователя 450 и затем дифференцироваться с помощью аналогового дифференциатора 460, содержащего, например, операционный усилитель, имеющий конденсатор на его инвертирующем входе и резистор в цепи обратной связи к инвертирующему входу. Затем этот сигнал из дифференциатора 460 преобразуется в токовый сигнал через токовое следящее устройство, содержащее источник тока 440, выход которого добавляется к постоянному току из источника 430 и подается на катушку 410. Однако следует признать, что цифровой дифференциатор может быть заменен аналоговым дифференциатором, в этом случае последовательно устанавливается цифроаналоговый преобразователь 450. Очевидными также будут другие способы обеспечения сигнала, чтобы управлять исполнительным механизмом 410 для демпфирования движения иглы. Предпочтительно, чтобы обеспечивалось управление изменяющейся силой, прикладываемой с помощью исполнительных механизмов; предпочтительно, чтобы в этом варианте воплощения можно было изменять не только величину силы, прикладываемой с помощью исполнительных механизмов, но и равновесие сил, прикладываемых каждым механизмом, с тем, чтобы устройство могло принудительно перемещаться либо вниз для измерения поверхности под щупом 130, либо вверх для измерения поверхности над щупом 130. Этот вариант воплощения также не ограничивается для применения в интерферометрическом измерительном устройстве. Альтернативные оптические устройства
Из приведенного выше описания варианта воплощения очевидно, что с более или менее одинаковым успехом в оптической системе может быть сделан ряд изменений и замен. Некоторые примеры таких модификаций и альтернативных конструкций теперь будут пояснены со ссылкой на следующие фиг. 20 - 24, в которых детали, соответствующие описанным выше деталям, снабжены, соответственно, теми же ссылочными номерами. Призма, показанная на фиг. 20, 22, 23 и 24, имеет параллельные боковые стороны с целью пояснения; это требует нанесения более сложного покрытия 335, если угол падения на них не равен 45o, но параллельные боковые стороны проще изготовить. Из фиг. 20 следует, что оптическое устройство, приведенное на фиг. 6 и 7, может быть изменено путем замены отражающей дифракционной решетки 300, описанной со ссылкой на фиг. 11, на прозрачную или частично прозрачную дифракционную решетку. Источник света 310 дает пучок, который направляется через тело 300 дифракционной решетки на внутреннюю поверхность дифракционной решетки 301, которая действует как пропускающая дифракционная решетка и пропускает дифрагированные пучки первого порядка по тем же путям, как описано выше со ссылкой на фиг. 7, в светоделительную призму 317. Таким образом, конструкция светоделительной призмы 317 немного упрощается в том отношении, что не требуется приемной или преобразующей пучок призмы 316. Зеркало 500 предусматривается для направления пучка из источника света 310 в дифракционную решетку. Поскольку теперь изогнутый элемент дифракционной решетки 300 действует как линза, способствующая сведению подающего на нее пучка, сводящая линза 318 фиг. 7 заменяется разводящей линзой 518 для компенсации этой тенденции и обеспечения коллимированных дифрагированных пучков. В другом случае, поскольку многие диодные лазеры дают расходящиеся пучки, лазерный диод 311 может быть выбран так, чтобы его дивергенция компенсировалась конвергенцией элемента дифракционной решетки 300 или с этой целью тыльная поверхность дифракционной решетки 300 сама может быть искривлена. Из фиг. 21 следует, что в особенно предпочтительном варианте воплощения устройство, по существу, такое же как на фиг. 6, 7 и 14. Из фиг. 22 следует, что источник света 310 и призма 317 в устройстве согласно фиг. 20 могут быть переставлены; и в этом случае для компенсации конвергенции вследствие кривизны дифракционной решетки используется разводящая линза 518 или источник расходящегося света 310. Из фиг. 23 следует, что по той же причине цилиндрическая линза 318 на пути света между источником света 310 и дифракционной решеткой 300 может быть заменена парой цилиндрических линз 318a, 318b на пути дифрагированных пучков. Из фиг. 24 следует, что устройство для направления падающего света из источника света 310 на дифракционную решетку 300 может быть упрощено путем пропуска призмы 316 преобразования пучка и замены вершины пирамиды 317 плоской поверхностью, перпендикулярной пучку света из источника света 310, который точно отрегулирован по средней центральной плоскости 335 призмы 317. Это упрощает устройство, но требует точного совмещения падающего пучка из источника света 310 с центральной плоскостью 335, чтобы падающий пучок не оказывал влияния на светоделительные характеристики расщепляющей пучок плоскости 335. В дополнение ко всем указанным выше устройствам также возможно выполнить изогнутую дифракционную решетку на наружной стороне шарнира 121 (т.е. на опорном элементе 120). Однако такое устройство уменьшает эффективную длину опорного рычага 120 и, следовательно, уменьшает применимость щупа для некоторых типов компонентов (например, труб), где требуется длинный опорный рычаг 120. Будут также очевидны многие другие изменения. Обработка сигнала
Можно обеспечить аналоговые выходные порты 150, несущие аналоговые сигналы от каждого детектора 341a, 341b, 342a, 342b или даже обеспечить оптические выходные порты 150, к которым пучки, принятые в положениях, в которых расположены детекторы, переносятся с помощью волоконно-оптических кабелей. В другом случае компактная конструкция, обеспеченная с помощью лазера и интерферометра относительно малых размеров в описанном выше варианте воплощения, делает возможным обеспечение обработки электрического сигнала в таком устройстве, уменьшающем возможность электрических и радиочастотных помех и увеличивающем универсальность применения устройства. Поскольку выходные сигналы, получаемые с помощью описанного выше устройства, по природе подобны сигналам, получаемым с помощью обычного измерительного устройства интерферометра Майкельсона, схемные решения обработки сигнала, используемые в этом типе устройства, могут быть с одинаковым успехом использованы с описанными выше предпочтительными вариантами воплощения. Описываемое ниже предпочтительное устройство обработки сигнала также может быть использовано с обычными интерферометрами типа Майкельсона. Однако из фиг. 25 следует, что в одной специфической конструкции этого варианта воплощения выходные сигналы детекторов 341a, 341b, 342a, 342b вычитаются для образования синусоидального и косинусоидального сигналов с помощью пары схем дифференционального усилителя и эти два сигнала подаются на выходные порты 150 перемещающегося модуля 110. В этом случае большая часть блока обработки сигнала 155 удобно размещается совместно с терминалом компьютера 160. Из фиг. 26 следует, что в предпочтительном варианте воплощения этого аспекта настоящего изобретения схема обработки сигнала 155 содержит схему счетчика интерференционных полос 600, предназначенную для поддержания подсчета, представляющего суммарное число пучков и впадин в амплитуде, детектируемой на выходе интерферометрического измерительного устройства, например, описанного выше, и интерполятор 700, предназначенный для генерирования выходного сигнала, представляющего фазовое положение между такими пиками или впадинами выходного сигнала. Данные низкого разрешения из счетчика 600 и данные высокого разрешения из интерполятора 700 объединяются и подаются в линейную корректирующую схему 810 и затем на выход либо устройства обработки данных, либо на запоминающее устройство, или, как показано, на дисплей 820. Удобно, чтобы и корректирующая схема 800 и пересчетная схема 810 обеспечивались с помощью компьютера 160, работающего с помощью хранимого программного управления. На фиг. 27 более подробно показана схема счетчика 600. Схема счетчика 600 содержит цифровой счетчик с триггерным выходом 610, например, шестнадцатиразрядный счетчик, и решающую схему 620, которая управляет счетчиком 610 для счета с положительным или отрицательным приращением. Это необходимо, поскольку, как описывается ниже, смещение щупа получается из числа подсчитанных интерференционных полос, но, чтобы получить критерий смещения, интерференционные полосы, подсчитанные в ответ на перемещение в одном направлении, необходимо вычесть из числа интерференционных полос, подсчитанных в ответ на перемещение в противоположном направлении. Это особенно необходимо, когда, как описано выше, число интерференционных полос является нелинейной функцией положения. Поэтому решающая схема 620 на выходе подает управляющие сигналы счетчику 610, показывающие должен ли быть фиксированный счет с положительным или отрицательным приращением в ответ на подсчитанные следующие интерференционные полосы. При детектировании интерференционных полос на счетчик 610 подается разрешающий сигнал, чтобы вызвать, соответственно, счет с положительным или убывающим приращением. Чтобы решающая схема 620 могла решать, каким должен быть подсчет с положительным или отрицательным приращением, она принимает два разнесенных по фазе сигнала. Необходимая обработка сигнала упрощается, если два сигнала разнесены по фазе на 90o. Из фиг. 9с очевидно, что изменение амплитуды сигнала от положения щупа x, как правило, синусоидальное, удовлетворяющее соотношению y = sin





























Из фиг. 31 следует, что интерполятор 700 в этом аспекте настоящего изобретения содержит вход 710, принимающий сигнал sin















Если схема, представленная на фиг. 32, с функцией F(



















Другими словами, величина сигнала ошибки







Из фиг. 33 следует, что альтернативная реализация принципа, иллюстрируемого на фиг. 31, работает для получения сигнала ошибки








Шины данных постоянных запоминающих устройств 722a, 722b соединяются с шинами цифрового входа пары соответствующих перемножающих цифроаналоговых преобразователей 740a, 740b, каждый из которых включает в себя резистивную цепочку, переключаемую в соответствии с его цифровыми входами для обеспечения соответствующего сопротивления для принимаемого аналогового тока и, следовательно, ослабления тока на величину, пропорциональную цифровому входу в перемножающий цифроаналоговый преобразователь. Перемножающий цифроаналоговый преобразователь 740a соединяется с входом sin






sin






Этот сигнал подается на схему компаратора 725, который формирует выход для положительного или отрицательного приращения счетчика 721 в любом случае, когда величина сигнала ошибки
















Из фиг. 34 следует что, может быть, в справочных таблицах 722a, 722b следует отдавать предпочтение хранению только положительных чисел. Соответственно, функциональные величины, хранимые в постоянных запоминающих устройствах могут вместо этого представлять 1+cos






Смещение половины одного разряда наименьшего значения, 0,7o, может быть добавлено к

















Синхронизация логической схемы 760 приспособлена для деления частоты задающего генератора схемы синхронизации на 10 перед подачей сигнала из схемы компаратора 725 на вход счетчика 721 так, чтобы счетчик 721 мог иметь положительное приращение только один раз каждую микросекунду. Причина для этого в том, чтобы препятствовать выключению счетчика 721 вследствие ложных кратковременных сигналов ошибки, которые вызываются коммутациями в перемножающих цифроаналоговых преобразователях 740a, 740b; без средства для предотвращения таких переходных процессов можно изменить величину счета счетчика 721, чтобы вызвать переходные процессы при коммутациях на выходах цифроаналоговых преобразователей 740a, 740b, которые затем изменяют величину счета счетчика еще раз. Однако возможны другие средства ограничения реакции системы на такие переходные процессы (например, фильтр нижних частот в аналоговой схеме). В схеме, представленной на фиг. 34 обнаруживается, что время установления, необходимое для затухания таких переходных процессов, является фактором, ограничивающим скорость интерполятора. Время установления 1 микросекунда с восьмиразрядным счетчиком, дающим 256 величин







Возможны различные модификации схемотехнических решений описанных выше счетчика и интерполятора. Например, схема оценки 720, представленная на фиг. 31, может содержать свободно работающий счетчик, частота счета которого управляется сигналом ошибки










Из фиг. 34 следует, что там, где счетчик фазового угла 721 делит фазу между интерференционными полосами на число, которое есть степень числа 2, выход фазового счетчика 721 может быть соединен с шиной данных цифрового выхода в качестве разрядов 0 - 7 нижнего порядка слова, для которого двоичный выход счетчика интерференционных полос 610 содержит разряды более высокого порядка. Когда число подсчитанных интерференционных полос не находится в абсолютно линейной зависимости от пройденного щупом расстояния, как в описанном выше устройстве интерферометрических измерений, эта шина цифрового выхода соединяется со схемой коррекции нелинейности 800, показанной на фиг. 26, которая может просто содержать постоянное запоминающее устройство, к адресным линиям которого присоединяется цифровое выходное слово, дающее на его линиях шины данных соответствующее корректное цифровое слово. При необходимости пересчетная схема 810, содержащая цифровой умножитель (например, дополнительную справочную таблицу в постоянном запоминающем устройстве), обеспечивается для преобразования корректного выхода схемы коррекции 800 в единицы расстояния в удобной форме. В описанном выше варианте воплощения расстояния щупа, соответствующее каждому интервалу между интерференционными полосами, составляет 0,833 мкм, и таким образом, каждый интервал 1/256 фазы соответствует 3,25 нм, таким образом, чтобы исправить корректное число до нанометров, умножитель 810 умножает на 1/3,25. Хотя схемы коррекции и пересчета 800, 810 для ясности показаны разделенными, на практике они могут содержать единую справочную таблицу в постоянном запоминающем устройстве, с помощью которой выполняется как коррекция, так и пересчет. Коэффициент, используемый пересчетной схемой 810, может быть получен вычислением из размеров и геометрии измерительного средства, а коррекция нелинейности удобно получается на этапе калибрования путем измерения цифровых выходных слов из счетчика 600 и интерполятора 700 в ответ на измерение известных поверхностей и профилей. Из сказанного выше очевидно, что схема обработки сигнала 150 содержит счетчик интерференционных полос 600 и интерполятор 700, которые могут быть использованы с другими типами интерферометрических устройств помимо описанных выше, и что описанное выше интерферометрическое измерительное средство может быть использовано с другими схемами обработки сигнала. Кроме того, хотя особенно выгодно использовать схему счетчика интерференционных полос детектирования пересечения нулевого уровня, как описано выше, вместе с описанной выше схемой интерполятора, поскольку это обеспечивает точную установку опорного сигнала фазы, схема счетчика интерференционных полос и схема интерполятора могут быть использованы раздельно. Кроме того, прижимающие устройства 400 для принудительного контактирования щупа или иглы с измеряемой поверхностью могут быть использованы с другими типами измерительных средств, чем те, которые описаны выше; например, для измерительного устройства с индуктивным датчиком. Однако при использовании вместе описанное выше измерительное устройство с выходной схемой обработки сигнала может обеспечить очень компактный блок, который может быть смонтирован в одном перемещающемся модуле 110 без излишней нагрузки на его вертикальную стойку, используя низковольтный источник питания, который безопаснее, чем известные, используемые для гелий-неоновых лазеров, и обеспечивающий удобный цифровой выход, предлагающий динамическое разрешение, например, 1,8

Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18, Рисунок 19, Рисунок 20, Рисунок 21, Рисунок 22, Рисунок 23, Рисунок 24, Рисунок 25, Рисунок 26, Рисунок 27, Рисунок 28, Рисунок 29, Рисунок 30, Рисунок 31, Рисунок 32, Рисунок 33, Рисунок 34, Рисунок 35, Рисунок 36