Способ точного определения установившихся реологических характеристик различных текучих сред
Изобретение относится к нефтедобыче, нефтехимии, биохимии, пищевой, косметической и лакокрасочной промышленности. Согласно способу измеряют установившиеся значения напряжений и скоростей сдвига
для самых различных текучих сред в широком диапазоне скоростей сдвига. По измеренным в эксперименте значениям определяют установившиеся реологические характеристики различных текучих сред
*,
* с помощью обобщенной реологической модели
где i = 1; 0; -1; n - показатель нелинейности. При i=1, n>0 описываются вязкопластики; i= 1, n<0 - псевдопластики; i=-1, n<0 - дилатантные системы; i= 0 - ньютоновские среды. Осуществляют перебор значений n и определяют коэффициенты модели
*,
*, приводящие к минимуму сумму квадратов отклонений расчетных и экспериментальных значений напряжений. Используя данную реологическую модель, возможно проводить аппроксимацию реограмм самых различных неньютоновских систем, как обладающих, так и не обладающих пластическими свойствами, причем полученных на различных видах вискозиметров. 5 табл.
Изобретение относится к областям нефтедобычи, бурения нефтяных и газовых скважин, нефтехимии, биохимии, пищевой, косметической, лакокрасочной промышленности.
К настоящему времени существует более 20 реологических моделей, описывающих взаимосвязь между установившимися значениями напряжений и скоростями сдвига. Многообразие реологических моделей способствует появлению большого количества работ, посвященным гидродинамическим расчетам различных течений. Аппроксимация реограмм, как правило, производится путем предполагаемых на соответствие моделей и выбора той, которая дает наименьшую погрешность. Большинство исследователей и инженеров, учитывая сложность определения параметров моделей, пользуются простейшими моделями Шведова-Бингама и Оствальда, приводящими к значительной погрешности аппроксимации. Естественно с этих позиций наиболее оптимальным является использование одной реологической модели, описывающей кривую течения с высокой степенью точности. Кроме статистической погрешности исследований на вискозиметрах исследователи сталкиваются с методической погрешностью, заложенной в основе данного способа исследований. Одной из них является методическая погрешность, вызванная неньютоновскими свойствами исследуемых жидкостей, и возникающая в связи с тем, что принимаемые значения скоростей сдвига на стенках вискозиметров не соответствуют действительным. Обычно скорость сдвига на стенке рассчитывается по выражениям, отвечающим ньютоновской среде. Поэтому пренебрежение рассматриваемой методической погрешностью может исказить представление об исследуемой неньютоновской системе. Цель данного изобретения - создание простого способа точного определения реологических характеристик на различных типах вискозиметров с учетом статистической погрешности и методической погрешности, вызванной неньютоновскими свойствами, для различных эмульсий, суспензий, золей, гелей, паст, нефтей, растворов и расплавов полимеров. Поставленная цель достигается с помощью реологической модели, позволяющей описывать с высокой степенью точности зависимость между установившимися значениями напряжений





























Модель Шульмана предназначалась автором исключительно для жидкостей, обладающих начальным напряжением сдвига








Как показала практика исследований более 40 реограмм, снимая установившиеся значения


Данное выражение можно привести к виду:

где Q - расход жидкости,



L,R - длина и радиус капилляра. Аппроксимируя параметры

подходящей функцией Q/(




Задворных В.Н. (Реодинамика нелинейно-вязкопластичных буровых растворов в кольцевом пространстве глубокой скважины. - Дисс...канд. техн. наук. М. МИНГ им. Губкина, 1987 - 171 с.) предлагает сразу учитывать этот тип погрешности, определяя коэффициенты реологической модели Шульмана в уравнениях движения для вискозиметров методом перебора. Однако данный способ существует чисто теоретически - перебор 4 коэффициентов модели, сопряженный с численным подсчетом интеграла, приводит либо к неоправданно завышенному времени счета, либо к неточностям определения коэффициентов. В ранней работе (Иктисанов В.А. Точное описание реологических характеристик неньютоновских систем, обладающих и не обладающих пластическими свойствами. М., ВНИИОЭНГ, Геология, геофизика и разработка нефтяных месторождений, N9, 1995, с. 51-70 ) опубликован способ учета данного типа погрешности, также связанный с численным подсчетом интеграла и с применением итераций, но без перебора коэффициентов реологической модели. К сожалению, данный способ является громоздким для практического применения. В результате в настоящее время исследования на вискозиметрах проводятся без учета методической погрешности, вызванной неньютоновскими свойствами, что приводит к искажению получаемых результатов. Решим задачу определения методической погрешности, вызванной неньютоновскими свойствами, для капиллярных вискозиметров, обладая единой реологической моделью (1). Вначале производится аппроксимация по изложенному выше алгоритму для скорости сдвига на стенке для ньютоновской жидкости 4Q/(



Далее из выражения (7) подставляем Q/(


Таким образом, используя коэффициенты модели, полученные для уравнения (7) и экспериментальные значения





Решим задачу учета методической погрешности для ротационных вискозиметров. Для течения Куэтта при вращении внешнего цилиндра с угловой скоростью w2 можно вывести следующее уравнение:

для вязкопластиков:












для псевдопластиков и дилатантных:



Повторяя те же выкладки, но для условия, когда внешний цилиндр неподвижный (w2 = 0), а внутренний вращается с угловой скоростью w1 в направлении, противоположном w2, получаем:

для вязкопластиков:










для псевдопластиков и дилатантных:


где


R1, R2 - радиусы внутреннего и внешнего цилиндров,






Таким образом, для ньютоновской жидкости достаточно построения кривой течения по следующим параметрам:

или

где

M - момент сил, L - высота цилиндра. Момент сил, снимаемый с внешнего или с внутреннего цилиндров, равен по модулю и различен только по направлению. Эффективная вязкость, определенная по значениям параметров (13) и (14), одинакова. Таким образом, независимо от того, какой из цилиндров вращается и с какого из них снимается момент сил, построение кривой течения можно проводить либо по уравнениям (13), либо по (14). Поэтому достаточно рассмотреть поставленную задачу при использовании напряжения и скорости сдвига для одного из цилиндров, например, для внутреннего цилиндра по уравнению (13). Выражения (13), (14) выведены для ньютоновской среды, однако они повсеместно используются и для неньютоновских систем, что безусловно искажает действительную кривую течения. Для ротационных вискозиметров из уравнений ( 10), (11), учитывая, что



при условии существования неподвижного ядра для вязкопластиков в зазоре, т.е. при




Из уравнения (15) следует, что разность истинных скоростей сдвига равна:
f(







Чтобы решить поставленную задачу учета методической погрешности для ротационных вискозиметров, вначале произведем аппроксимацию параметров




В результате дифференцирования w2 или w1 из выражения (17) уравнение (16) можно привести к виду:

В отличие от соотношения (5) для капиллярного вискозиметра в данном случае присутствуют две неизвестные истинные скорости сдвига. Для того, чтобы определить истинную скорость сдвига на внутреннем цилиндре, необходимо знать соотношение истинных скоростей сдвига на внешнем и внутреннем цилиндрах. В первом приближении можно принять, что данное соотношение определяется с помощью коэффициентов модели для уравнения (17):

Впоследствии, определяя по уравнению (18) уточненные скорости сдвига, вновь производится аппроксимация и определяются более точные коэффициенты реологической модели. Далее уточняется соотношение скоростей сдвига (19) для новых коэффициентов модели и все повторяется вновь. При этом в выражении (18) коэффициенты не меняются. Как показала практика, достаточно 3-8 итераций для определения истинных скоростей сдвига и коэффициентов модели, описывающих истинную реограмму. Методическая погрешность, вызванная неньютоновскими свойствами, определяется отношением истинной скорости сдвига из уравнения (18) к скорости сдвига для ньютоновских сред по уравнению (17). Анализируя уравнение (18) для ротационных вискозиметров и уравнение (8) для капиллярного вискозиметра, можно отметить, что неучет методической погрешности приводит к завышенной эффективной вязкости для вязко- и псевдопластиков и к заниженной эффективной вязкости для дилатантных систем. Для капиллярного вискозиметра истинная скорость сдвига на стенке не зависит от радиуса капилляра, а является только функцией напряжения на стенке и коэффициентов модели. Для ротационных вискозиметров рассматриваемая методическая погрешность помимо коэффициентов модели зависит от величины относительного кольцевого зазора





1. Леонов Е.Г., Исаев В.И. Гидроаэромеханика в бурении: Учебн. для вузов. - М.: Недра, 1987 - 304 с. 2. Шульман 3.П. Конвективный тепломассоперенос реологически сложных жидкостей. М.: Энергия, 1975 - 351 с. 3. Иктисанов В.А. Точное описание реологических характеристик неньютоновских систем, обладающих и не обладающих пластическими свойствами. М., ВНИИОЭНГ, Геология, геофизика и разработка нефтяных месторождений, N9, 1995, с. 51-70
4. Реодинамика нелинейно-вязкопластичных буровых растворов в кольцевом пространстве глубокой скважины. - Дисс... канд. техн. наук. М. МИНГ им. Губкина, 1987 - 171 с.
Формула изобретения

где n - показатель нелинейности;


i = 1; 0; -1,
при i = 1, n > 0 описываются вязкопластики









при i = -1, n < 0 - дилатантные системы

при i = 0 - ньютоновские жидкости











РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6