Способ измерения дальности до источника шумоизлучения
Предлагаемый способ относится к области пассивной локации и может быть использован для измерения дальности до рыболовного судна в системе охраны морской экономической зоны или до айсберга в системе защиты от айсбергов морских платформ нефтедобычи. Целью заявляемого объекта является повышение точности измерения дистанции, что и является достигаемым техническим результатом. Заявляемый способ измерения дальности до источника шумоизлучения предусматривает прием смеси сигнала шумоизлучения и помехи, измерение спектра принятой смеси, измерение спектра принятой помехи, предварительное формирование прогнозируемых спектров сигнала шумоизлучения в точке приема, вычисление опорного спектра по каждому из сформированных прогнозируемых спектров с учетом результата измерения спектра принятой помехи, вычисление величин функциональной корреляции между измеренным спектром смеси и каждым из опорных спектров и подбор гипотетического значения дальности путем определения номера того из опорных спектров, величина функциональной корреляции которого с измеренным энергетическим спектром принятой смеси максимальна. 3 з.п. ф-лы, 1 ил.
Предлагаемый способ относится к области пассивной локации и может быть использован для измерения дальности до рыболовного судна в системе охраны морской экономической зоны или до айсберга ("жизнедеятельность" айсберга проявляется, в частности, в его таянии, сопровождающемся генерацией шума) в системе защиты от айсбергов морских платформ нефтедобычи.
Для практических целей, как правило, необходимо обеспечить измерение и дальности, и пеленга источника шумоизлучения. Однако в связи с возможностью независимого измерения этих параметров, а также в связи с тривиальностью решения задачи измерения пеленга последняя задача в рамках заявляемого объекта не рассматривается. Известные способы измерения дальности до источника шумоизлучения могут быть разделены на следующие группы. К первой группе относятся способы, основанные на многопозиционном приеме и пеленговании источника несколькими приемными позициями (триангуляционный, или угломерный способ), либо измерении разностей расстояний от источника до приемных позиций (разностно-дальномерный способ), либо комбинации указанных двух способов (угломерно-разностно-дальномерный способ) (см. В.В. Караваев, В.В. Сазонов. Статическая теория пассивной локации. М., Радио и связь, 1987, р. 5.4.). Ко второй группе относятся способы, основанные на анализе кривизны фронта волны полезного сигнала (см. цитированную книгу В.В. Караваева, р. 5.1, а также "Подводная акустика и обработка сигналов" под ред. Л. Бъерне. М., Мир, 1985, стр. 325-328 и стр. 415-418). Недостатком указанных способов является необходимость либо наличия нескольких существенно разнесенных в пространстве приемных позиций, либо наличия приемной антенны с очень большой апертурой - при условии сохранения когерентности полезного сигнала по фронту в пределах всей апертуры антенны. Следствиями указанных факторов являются высокие затраты на реализацию способа измерения дальности или/и относительно низкая точность измерения. Наиболее близким к заявляемому является способ измерения дальности до источника шумоизлучения, описанный в книге "Подводная акустика и обработка сигналов" под ред. Л. Бъерне. М., Мир, 1985, стр. 417 (последний абзац) и 418 (первый абзац). В указанном способе (прототипе) при измерении дальности реализуются операции приема сигналов (фактически имеется в виду прием смеси сигнала шумоизлучения и помехи), их фильтрации, детектирования и усреднения, после чего дальность получается подбором гипотетической дальности. Данный способ обеспечивает измерение дальности, основанное на анализе необходимых задержек, вводимых в элементы антенны в обеспечение ее фокусировки на источник как по пеленгу, так и по дальности. Недостатком прототипа является низкая точность измерения вследствие имеющих место на практике ограничений на величину апертуры антенны. Для того, чтобы работал эффект фокусировки антенны по дальности на расстояниях хотя бы 5. ..10 км, необходима апертура антенны в сотни метров, однако при таких размерах антенны ограничения точности измерения обусловлены несохранением когерентности полезного сигнала на столь большом пространственном интервале. Кроме того, как указано в цитированном источнике (стр. 418), способ вообще перестает действовать при многолучевом распространении, что, как правило, и имеет место на практике. Заявляемый способ измерения дальности до источника шумоизлучения предусматривает прием смеси сигнала шумоизлучения и помехи, измерение спектра (здесь и далее, если это не оговорено особо, имеется ввиду энергетический спектр) принятого сигнала, измерение спектра принятой помехи, предварительное формирование прогнозируемых спектров сигнала шумоизлучения в точке приема, вычисление опорного спектра по каждому из сформированных прогнозируемых спектров с учетом результата измерения спектра принятой помехи, вычисление величин функциональной корреляции между измеренным спектром сигнала шумоизлучения и каждым из опорных спектров и подбора гипотетического значения дальности по соотношениям величин функциональной корреляции. Здесь и далее использованный термин "функциональная корреляция" является обобщающим по отношению к классическому термину "корреляция" (см. В.И.Винокур, Р.А. Ваккер. Вопросы обработки сложных сигналов в корреляционных системах. М. Советское радио. 1972. с. 51). Блок-схема заявляемого способа приведена на фиг. 1, где обозначены: 1 - прием смеси сигнала шумоизлучения и помехи; 2 - измерение спектра принятой помехи; 3 - измерение спектра смеси принятого сигнала шумоизлучения и помехи; 4.1-4.A - предварительное формирование прогнозируемых спектров сигнала шумоизлучения в точке приема; 5.1-5. A - вычисление опорного спектра (с учетом результата измерения спектра принятой помехи); 6.1-6.A - вычисление функциональной корреляции; 7 - подбор гипотетического значения дальности. Операция 1 предусматривает преобразование акустических сигналов в электрические. Она может быть реализована как одним гидрофоном, так и антенной решеткой из нескольких гидрофонов. Смысл операций 2 и 3 определяется их названиями. Совокупность операций 4 (4.1...4.A) реализуется путем предварительного расчета и запоминания спектров сигнала шумоизлучения в точке приема при заданных дальностях, например, Ri = i
















где


Измеряемая величина дальности


либо (в более точном варианте реализации заявляемого способа)

Последнее соотношение методически основано на уточнении оценки дальности путем определения абсциссы максимума параболы, приведенной через три смежных "по дистанции" отсчета решающей статистики Ki,j


Как отмечено выше, целесообразно выбирать







Возможен также вариант реализации заявленного способа при A=3; при этом дальность оценивается по положению максимума функции, связывающей вычисленные 3 величины функциональной корреляции и истинную дистанцию до объекта. (Для простоты описания способа соответствующие расчетные соотношения в этом варианте его реализации опускаются). Принцип действия заявляемого способа основан на том, что постоянная составляющая результата вычисления функциональной корреляции Ki,j (при соответствующем определении необходимых нормировок отсчетов уровней опорных спектров, получаемых по соответствующим прогнозируемым спектрам сигналов шумоизлучения в точке приема) будет максимальной именно при тех индексах i и j, при которых значения дальности Ri и параметра наклона спектра Vj в наибольшей степени соответствуют истинным значениям дальности и параметра наклона спектра (здесь оценка параметра спектра

|Bl|2 = Re(Bl)2+Im(Bl)2,
(где Re(B1) и Im(B1) соответственно реальная и мнимая части соответствующего коэффициента ДПФ), и многоканальный накапливающий сумматор (т.е. совокупность накапливающих сумматоров), в каждом l-м канале которого реализуется накопление поступающих последовательно во времени значений |Bl|2.
Все накапливающие сумматоры объединены по синхровходам (при подаче импульса на синхровход содержимое всех накапливающих сумматоров обнуляется). При ориентации антенны в направлении на полезный сигнал блок вычитания (входящий в состав блока, выполняющего операцию 2) обеспечивает подавление полезного сигнала, т.е. обеспечивает возможность измерения спектра помехи. Блок суммирования (в составе блока, выполняющего операцию 3) обеспечивает частичное (на 3 dB) подавление помехи, что увеличивает отношение сигнал/шум в принимаемой смеси сигнала и помехи. Ориентация антенны в направлении на источник сигнала может быть осуществлена либо механическим поворотом, либо путем электронной компенсации. Процедуры предварительного вычисления спектров сигналов в точке приема непосредственно в составе заявляемого объекта могут для простоты не рассматриваться. При этом блоки, реализующие операции 4.1-4.A, представляют собой постоянные запоминающие устройства. При рассмотрении же указанных процедур в составе заявляемого объекта последние блоки включают также и процессоры, вычисляющие массивы Gпрi,j(fl). Блоки, выполняющие операции 5.1-5.A, содержат процессоры, вычисляющие массивы Hопi,j(fl), и оперативные запоминающие устройства, хранящие результаты вычислений. Блок 6 содержит комбинационные арифметические устройства вычитания, умножения и сложения, обеспечивающие вычисление величин Ki,j по указанным выше формулам. Блок, реализующий операцию 7, является, например, многовходовым цифровым компаратором последовательного или параллельного типа. Алгоритм работы указанного компаратора следующий:
1) В ячейку оперативного запоминающего устройства (назовем ее Kmax) заносится машинный нуль. Значения индексов i и j также устанавливаются в нуль. 2) Затем сигналы (их коды) на выходах блоков 6 с индексами i,j сравниваются со значением Kmax, Если величина Ki,j больше Kmax, то в ячейку Kmax заносится значение Ki,j и индексы i и j. 3) После этого индекс j увеличивается на 1 и повторяют шаг 2 до тех пор, пока j не примет значение A. 4) Обнуляют индекс j и увеличивают на 1 индекс i. Затем повторяют шаги 2-3 до достижения индексом i значения A. 5) По окончании шага 4 в ячейке ОЗУ находятся значение Kmax и соответствующие ему значения индексов i и j, однозначно связанные с искомой дальностью и наклоном спектра шумоизлучения в точке излучения. Заявляемый способ в части операций 2...7 технически реализуется на средствах вычислительной техники, которые могут быть либо аппаратными, либо программируемыми. В первом случае требуемая последовательность выполнения операций 2...7 обеспечивается соответствующим соединением элементов памяти и арифметических блоков комбинационного типа. Во втором случае требуемая последовательность операций 2...7 обеспечивается программируемым вычислителем, при этом вычислитель должен иметь доступ к внешней памяти объемом 0.5-4 Мбайт для хранения заранее вычисленных опорных спектров и промежуточных результатов вычислений и процессор, обеспечивающий реализацию базовых арифметических операций, сравнение чисел и условные переходы. Заявляемый способ в динамике реализуется следующим образом. Прием смеси сигнала и помех реализуется непрерывно. Операция 2 измерения спектра помехи (а также измерения принятой смеси сигнала и помехи 3) фактически реализуется как измерение соответствующего спектра путем вычисления ДПФ от входной реализации на интервале времени














Формула изобретения



где


3. Способ по п. 1, отличающийся тем, что операция вычисления опорного спектра Нопi,j (fl) по каждому из сформированных прогнозируемых спектров Gпрi,j (fl) реализуется путем расчетов по формуле

где Gп (fl) - спектр помехи. 4. Способ по п.1, отличающийся тем, что в результате подбора гипотетического значения дальности, осуществляемого путем определения совокупности номеров iо, jо того из опорных спектров, величина функциональной корреляции которого с измеренным спектром смеси принятого сигнала шумоизлучения и помехи максимальна, определяется сочетание индексов iо, jо, при котором удовлетворяется условие

и в качестве искомой дальности принимается величина

РИСУНКИ
Рисунок 1