Способ ожижения природного газа
Природный газ высокого давления делят на два потока, один из которых (основной) направляют в предварительный теплообменник, а другой - в охлаждаемую вихревую трубу. После предварительного теплообменника основной поток поступает в рекуперативный теплообменник, а затем - в дроссель. Образовавшуюся при этом жидкую фазу собирают в конденсатосборнике, а газовую фазу после прохождения рекуперативного теплообменника соединяют с холодным потоком из вихревой трубы и подают в предварительный теплообменник. Использование охлаждаемой вихревой трубы увеличивает коэффициент ожижения природного газа в 1,2 - 1,8 раза по сравнению с дроссельным циклом. 1 з.п. ф-лы, 2 ил.
Настоящее изобретение относится к криогенной технике, а именно к способу ожижения природного газа.
Для получения сжиженного природного газа (СПГ) широко используются дроссельные ожижительные циклы с различными способами предварительного охлаждения природного газа (ПГ). Максимальный коэффициент ожижения достигается в каскадных холодильных схемах, где в качестве внешнего хладагента для охлаждения прямого потока газа используются индивидуальные углеводороды или их смеси. Вследствие применения сложного, дорогостоящего и энергоемкого оборудования такие способы ожижения оказываются экономически выгодными только при организации крупномасштабного производства сжиженного природного газа, измеряемого миллионами т/год. Тот же недостаток (необходимость применения сложного дорогостоящего оборудования) присущ установкам малой и средней производительности, где используются технологические схемы с использованием внутренних циркуляционных холодильных контуров, в основу которых положен принцип изоэнтропийного расширения части потока ожижаемого газа в детандерных агрегатах (цикл Гейландта и его разновидности). Применительно к объектам, осуществляющим редуцирование уже предварительно сжатого природного газа, подаваемого по магистральным газопроводам - газоредуцирующим станциям (ГРС) и газоредуцирующим пунктам (ГРП) или его раздачу - автогазонаполнительные компрессорные станции (АГНКС), может быть применен наиболее простой процесс ожижения - классический дроссельный цикл. Ожижение в нем основано исключительно на рекуперативной утилизации прямым потоком газа высокого давления холода несконденсировавшейся части ожижаемого потока [1] (прототип). Технологически он заключается в охлаждении газа в рекуперативном теплообменнике, дросселировании и разделении образующейся парожидкостной смеси в конденсатосборнике с выводом паров в рекуперативный теплообменник, а жидкости - потребителю. Способ обладает рядом достоинств (низкая стоимость, простота реализации, надежность), но характеризуется малой величиной коэффициента ожижения. Вследствие указанной причины повышение коэффициента ожижения обычно достигается за счет введения в цикл дополнительных источников холодопроизводительности. Нами предлагается способ ожижения ПГ в дроссельном цикле с использованием холодильного контура, в основу которого положен принцип энергоразделения газа в охлаждаемой одно- или многоступенчатой вихревой трубе (ОВТ). Спецификой конструкции ОВТ является то, что ее горячий конец снабжен наружным контуром (рубашкой), в которую подается охлаждающий газ или жидкость. В результате весь (газ








i7 - энтальпия суммарного обратного потока из ОВТ и (Т-II) на выходе из предварительного теплообменника (Т-I);
i' = i4 - энтальпия жидкости на линии конденсации;
i'' = i5 - энтальпия пара на линии конденсации, размерность: [i] = КДж/кг;
G1, безразмерный удельный - расход основного (идущего на снижение) потока газа;
G2, безразмерный удельный - расход газа через ОВТ;
Примечание: G1+G2=1;
K0 - коэффициент ожижения ПГ в установке;
A - кДж/кг, удельная холодопроизводительность ОВТ, рассчитываемая по уравнению:

где




где




можно оценить интегральную эффективность принятого технического решения. Зависимость параметра

от входного давления природного газа для температуры T = 300K приведена на графике (фиг. 2). При этом рассмотрены два варианта расширения газа в охлаждаемой вихревой трубе:
- одноступенчатое (2,0<P<6,0 МПа),
- двухступенчатое (6,0<P<20 МПа). Из графика следует, что в диапазоне входных давлений от 2 до 6 МПа (одноступенчатая охлаждаемая вихревая труба) и от 6 до 20 МПа (двухступенчатая охлаждаемая вихревая труба) предлагаемый способ ожижения обеспечивает повышение реального коэффициента ожижения природного газа против идеального дроссельного цикла не менее чем 1,2-1,8 раза. Расширение газа высокого давления осуществляется ступенчато в двух или более охлаждаемых трубах, вход газа в которые является выходом из предыдущей вихревой трубы. Литература:
1. Иванцов О.М., Двойрис А.Д. Низкотемпературные газопроводы. М., Недра. 1980, с. 207 - 209. 2. Меркулов А.П. Вихревой эффект и его применение в технике. М., Машиностроение, 1969, с. 65 - 69. 3. Дыскин Л.М. Вихревые термостаты и воздухоосушители. Н.Новгород. ННГУ, 1991. с. 5 - 16.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2PD4A - Изменение наименования обладателя патента СССР или патента Российской Федерации на изобретение
(73) Новое наименование патентообладателя:
Общество с ограниченной ответственностью "Газпром трансгаз Санкт-Петербург" (RU)
Адрес для переписки:
196128, Санкт-Петербург, ул. Варшавская, 3, ООО "Газпром трансгаз Санкт-Петербург"
Извещение опубликовано: 20.09.2010 БИ: 26/2010