Вихревой термопреобразователь
Использование: в холодильной технике. Сущность изобретения: вихревой термопреобразователь содержит тангенциальный сопловой ввод, камеру энергетического разделения с рубашкой и задней стенкой с обтекателем, развихритель потока и осевой выходной патрубок. Кольцевая камера выполнена в виде двояковыпуклой линзы с криволинейными поверхностями, состыкованными по внешнему диаметру. Камера энергетического разделения плавно сопряжена со средней частью кольцевой камеры, обтекателем задней стенки и осевым патрубком. Обтекатель выполнен в виде воронки с радиальным переходом от задней стенки. Развихритель установлен на патрубке выхода холодной среды и жестко соединен с носком обтекателя. На внешней поверхности горячей камеры выполнена рубашка для прокачки теплоносителя. На поверхности холодной части камеры разделения и осевого патрубка - рубашка для низкопотенциального теплоносителя. 4 з. п. ф-лы, 5 ил.
Изобретение относится к холодильной технике, конкретно к вихревым генераторам холода, основанным на использовании эффекта Ранка, а также к теплоэнергетике, конкретно к вихревым теплогенераторам, работающим на газообразной и жидкой рабочих средах, в частности хладонах, углеводородах, воде.
Известны вихревые термопреобразователи, выполненные в виде цилиндрической или конической трубы, снабженной камерой энергетического разделения потока, рубашкой для прокачки теплоносителя, второй рубашкой-теплообменником на выходе холодной среды, камерой вихревого ввода, сопряженной с трубой, содержащие обтекатель на задней стенке, осевой патрубок для выхода холодной среды и развихритель закрученного потока [1-4] Указанные термопреобразователи имеют большую длину камеры энергетического разделения, но ее термодинамическая эффективность недостаточно высока вследствие того, что радиусы вращения рабочей среды на участках входа и выхода имеют небольшое различие (R/r 3 5). Известен также вихревой термопреобразователь [5] в котором сопловой ввод рабочей среды установлен на внешнем диаметре плоской кольцевой камеры и вихревой сток происходит в радиальном направлении к осевому сливному патрубку (R/r




поперечный разрез; на фиг. 4 продольный разрез соплового ввода для газа; на фиг. 5 продольный разрез соплового ввода для жидкости. Устройство содержит тангенциальный сопловой ввод 1 рабочей среды, кольцевую камеру 2, выполненную в виде двояковыпуклой линзы, образованной двумя криволинейными, например частями, сферическими поверхностями с передней 3 и задней 4 стенками, состыкованными между собой по внешнему диаметру, камеру 5 энергетического разделения, плавно сопряженную со средней частью кольцевой камеры, с обтекателем 6 на задней стенке, выполненным в виде глухой конической воронки с радиальным переходом от средней части задней стенки и вытянутым в сторону выходного патрубка 7 носком 8. Перед патрубком выхода холодной среды установлен развихритель 9 потока, выполненный в виде плоской пластины, трезубца или крестовины. Выступающая передняя кромка пластины развихрителя жестко соединена с носком обтекателя. На внешней поверхности кольцевой камеры выполнена рубашка 10, охватывающая также горячую зону камеры разделения и образующая полость для прокачки горячего теплоносителя. Вторая рубашка 11 с штуцерами входа и выхода образована на осевом патрубке и охватывает также холодную приосевую зону камеры разделения. При использовании в качестве холодильника осевой патрубок закрыт теплоизолятором 12. Сопловой ввод рабочей среды выполнен оптимизированным для каждой конкретной среды в виде, например, сопла Лаваля для газообразных сред или сходящегося скругленного на входе короткого конфузора для несжимаемых жидкостей. Устройство работает следующим образом. Рабочая среда под избыточным давлением 3 10 бар подается в сопловой ввод, ускоряется в нем и впрыскивается со скоростью 100 500 м/с в кольцевую камеру. Вращаясь в диффузоре камеры, струя совершает движение по сужающейся спирали в направлении осевого выходного патрубка. Линейная окружная скорость потока при этом постепенно снижается пропорционально коэффициенту потерь, а угловая скорость возрастете обратно пропорционально радиусу вращения и более медленно снижается соответственно снижению окружной скорости. Центробежное поле, действующее на вращающийся поток среды, создает в камерах ввода и энергетического разделения центробежный температурный градиент, пропорциональный отношению давлений на входе и выходе. Чем выше степень расширения потока, тем выше и теплоперепад. При использовании термопреобразователя в режиме холодильника в полость, закрытую рубашкой 10, вводится охлаждающий теплоноситель, например вода с температурой 10 20oC. При работе в качестве теплогенератора или теплового насоса второй теплоноситель прокачивается через полость, закрытую рубашкой 11. Тепло от низкопотенциального теплоносителя (10 -20oC) передается вращающейся среде и через радиальный центробежный температурный градиент к внешнему диаметру камер разделения и ввода, нагревая теплоноситель, омывающий горячую зону,до высоких температур. Устройство обтекателя на задней стенке и развихрителя на выходе потока позволяют перевести кинетическую энергию потока в температурный градиент. Жесткая связь кромки развихрителя с носком обтекателя, кроме того, увеличивает его жесткость и предотвращает скручивание скоростным потоком. Таким образом устройство обеспечивает поставленную цель, повышает эффективность, отопительный и холодильный коэффициенты преобразования, уменьшает металлоемкость, исключает протечки. Основной отличительный признак устройства выполнение кольцевой камеры вихревого ввода в виде двояковыпуклой линзы позволяет:
перенести диффузор с участка длинной цилиндрической трубы на саму кольцевую камеру, тем самым сократить длину;
обеспечить плавный переход с минимальными потерями от диффузора к конфузору выходного патрубка;
увеличить прочность и устойчивость формы (жесткость) камеры.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5