Прокатализатор для производства полимеров этилена, способ его получения и применения
Изобретение относится к прокаталитическому компоненту каталитической композиции Циглера-Натта, пригодной для производства полимеров этилена. Прокатализатор включает неорганический носитель, соединения хлора, магния и титана на указанном носителе. Баланс активности АВ прокатализатора в заданных условиях полимеризации определяется выражением AB>3,2, где A - полимеризационная активность в кт ПЭ/г кат.ч; MFR2 - скорость течения расплава в г/мин при нагрузке 2,16 кг, согласно стандарту ИСО (ISO 1133), отсутствие верхнего индекса (') означает полимеризацию с низкой скоростью течения расплава, наличие верхнего индекса (') означает полимеризацию с высокой скоростью течения расплава. Эти соединения улучшают эффективность полимеризующего катализатора, длительность его использования и другие свойства каталитической смеси и прежде всего свойства полимера, получаемого с помощью этой смеси катализаторов. 3 с. и 36 з.п.ф-лы, 2 табл., 1 ил.
Изобретение относится к прокаталитическому компоненту каталитической композиции Циглер - Натта, пригодной для производства полимеров этилена. Композиция включает смесь, состоящую из атомов металла III группы (13), хлора, магния и титана, нанесенных на частицы неорганического носителя. Изобретение относится также к способу его получения и применения.
Этилен, один или вместе с другими ненасыщенными олефиновыми мономерами, может быть полимеризован в присутствии составного катализатора, имеющего два компонента: соединение переходного металла 4 - 6 группы Периодической системы элементов (Hubbard,IUPAC 1970), который часто называется прокатализатором, и соединение металла 1 - 3 группы Периодической системы элементов, т.н. сокатализатор. Катализатор Циглер-Натта был далее усовершенствован путем помещения прокатализатора на более или менее инертные частицы носителя и путем введения в него на стадии его приготовления различных добавок, среди которых соединения - доноры электронов. Эти соединения улучшают эффективность полимеризующего катализатора, длительность его использования и другие свойства каталитической смеси, и прежде всего свойства полимера, получаемого с помощью этой смеси катализаторов. При образовании этиленовых и других полимеров получаются не одинаковые по молекулярному весу молекулы, а их смесь с узким или широким распределением по молекулярным весам. Могут быть определены различные средние молекулярные веса в полимерной смеси для описания наиболее общего молекулярного веса путем определения максимума распределения и некоторых индексов для характеристики ширины распределения. Для регулирования молекулярного веса в реакции полимеризации можно добавлять соединение, называемое агентом передачи цепи. Для получения полимерных продуктов с различными молекулярными весами в полимеризационную реакцию нужно ввести различные количества агента, контролирующего молекулярный вес. Наиболее обычным и предпочтительным агентом передачи цепи является водород, потому что в растущей цепи не остается посторонних атомов или групп, которые могли бы вызвать помехи в процессе полимеризации, или придать нежелательные свойства полимерному продукту. Легкость изменения молекулярного веса получаемого полимера в зависимости от количества водорода, или т.н. изменение водородной чувствительности, сильно зависит от состава катализатора. Проблема обычно состоит в том, что при производстве полиэтилена полимеризационная активность некоторых катализаторов при получении полимеров с высоким молекулярным весом выше, обычно во много раз, и даже в десять раз выше, чем при получении полимеров с низким молекулярным весом. Это отсутствие баланса каталитической активности является общим недостатком всех известных катализаторов. Дисбаланс проявляется тогда, когда, при использовании известных катализаторов, происходит резкое падение продуктивности катализатора при переходе от условий полимеризации, дающих полимеры с высоким молекулярным весом (низкая текучесть расплава), к условиям полимеризации, дающим полимеры с низким молекулярным весом (высокая текучесть расплава). Даже если такого рода коммерческий катализатор имеет вполне хорошую производительность в случае полимера с величиной текучести расплава MFR, равной 1 (MFR 1, определенная по стандарту ISO 1133), при переходе к полимеру с MFR 500 остается только 10% от производительности катализатора. Таким образом, желательно получить каталитическую систему, имеющую высокую активность независимо от молярной массы образующегося полимера. Согласно изобретению предложен новый прокатализатор, с помощью которого могут быть получены с равной и высокой активностью этиленовые гомополимеры или сополимеры с низким или высоким молекулярным весом. Независимо от введенного в полимеризационный реактор водорода, может быть достигнут баланс активности в обоих случаях при использовании прокатализатора по п. 1 формулы изобретения. Уникальные свойства катализатора, согласно изобретению, заключаются в его хорошем балансе активности в очень широком диапазоне значений парциальных давлений водорода, используемых при полимеризации для регулирования молярной массы. Таким образом, возможно проводить полимеризацию этилена с этим новым катализатором при высокой и при низкой текучести расплава и все же получать при этом высокие производительности. Такой баланс МЕД/активности делает этот катализатор универсально пригодным для большинства типов полиэтиленовых смол во всех полимеризационных процессах, использующих гетерогенную каталитическую систему. Изобретение решает задачу одновременно получить максимальную каталитическую активность и ее независимость от давления полимеризационного водорода, т.е. от скорости течения расплава полимера путем выбора соответствующего баланса активностей. Баланс активностей AB может быть определен как


с верхним индексом (') - высокая MFR2. Согласно изобретению, поставленная задача решается выполнением условия
AB

AB

а) неорганический носитель взаимодействует с алкилметаллхлоридом общей формулы
(RnMeCl3 - n)m (1)
где R алкильный радикал с C1 - C20, Me - металл из III (13) группы Периодической системы элементов, n = 1 или 2, m = 1 или 2,
при этом образуется первый реакционный продукт;
b) первый реакционный продукт взаимодействует с соединением или смесью, содержащей гидрокарбил, гидрокарбилоксид и магний, с образованием второго реакционного продукта,
с) второй реакционный продукт взаимодействует с соединением титана, содержащим хлор, с общей формулой
ClxTi(ORIV)4 - x (2)
где
RIV - гидрокарбильный радикал с C2-C20
и x = 3 или 4, с образованием указанного прокатализатора. Описанный в настоящем патенте катализатор включает, таким образом, алкилметаллхлорид, являющийся внутренним растворимым хлорирующим агентом, который действует также как сокатализатор, растворимое соединение или смесь соединений магния (далее именуемое как магниевый комплекс) с достаточно малой вязкостью и соединение титана, содержащее хлор. Под растворимостью растворимых соединений имеется в виду их растворимость в неполярных углеводородных растворах. Компоненты катализатора помещаются на подходящий носитель катализатора. Если материал носителя используется вместе с растворимыми компонентами катализатора, имеющими достаточно низкую вязкость, то может быть достигнуто хорошее строение катализатора и затем полимера. Материал носителя должен иметь соответствующий размер частиц, большую пористость и большую удельную площадь поверхности. Хороший результат достигается в случае, если материал носителя имеет удельную площадь поверхности 100 - 500 м2/г носителя и объем пор 1 - 3 мл/г носителя. Материал носителя должен также быть предварительно химически обработан, например обработан силаном или алкилами алюминия и т.п. Годятся окислы некоторых металлов, но предпочтительны окислы кремния, алюминия, титана, хрома или циркония или их смеси. Наиболее предпочтительна двуокись кремния или кремнезем. До импрегнации других компонентов катализатора желательно высушить носитель. Хорошие результаты получаются, если носитель подвергается тепловой обработке при температуре от 100oC до 900oC достаточное время, при этом количество поверхностных гидроксильных групп, в случае кремнезема, уменьшается до величины ниже 2 ммоль/г SiO2. Внутренний сокатализатор и хлорирующий агент должен быть соединением металла, содержащим хлор, и быть растворимым в неполярных углеводородных растворителях. Хорошие результаты получаются, если этим компонентом является алкилметаллхлорид типа (1):
(RnMeCl3-n)m (1)
где R - алкильный радикал C1-C20. Me - металл из группы III (13) Периодической системы элементов, предпочтительно алюминий, n=1 или 2, и m=1 или 2. Алкильный радикал R может быть линейным, разветвленным, или циклическим, или их смесью, из них предпочтителен C2-C20 алкил. Может быть также использована комбинация различных хлорирующих агентов. Хорошие результаты получаются, если используется алкилалюминийхлорид, предпочтительно низший алкилалюминийдихлорид, наиболее предпочтителен этилалюминийдихлорид. Магниевый комплекс, используемый в этом каталитическом синтезе, должен быть полностью растворимым в неполярном углеводородном растворителе. Магниевый комплекс (соединение, смесь) должен иметь общий состав по формуле
Mga(OR')bR''cXd (3)
где X - галоген, предпочтительно хлор, R' - углеводородный радикал, предпочтительно углеводородный радикал с C2-C20, который может содержать или не содержать гетероэлемент, R'' - углеводородный радикал с C2-C20, и где а > 1, b > 0, с > 0, а = 1/2(b+c+d), d

Mg(OR''')p(R'')2 - p (4)
Mg(OCOR''')p(R'')2 - p (5)
Mg(O-CH2-O-R''')p(R'')2-p (6)
В (4), (5) и (6) R' и R'' могут быть различными или идентичными углеводородными радикалами. Предпочтительно, это линейные или разветвленные алифатические или ароматические радикалы, и наиболее предпочтителен R' - алкильный радикал, p находится в пределах 1 <p< 2, и наиболее предпочтительно 1,2 < p < 2,0. OCO - карбоксильная группа карбоксильной кислоты. Существенно для композиции, чтобы p было меньше 2. Соединения (3) - (6) в последующем тексте обозначаются как магниевые комплексы. Необходимо, чтобы во всех соединениях (3) - (6) имелись небольшие количества алкилмагниевых радикалов. Один из способов получения этих магниевых комплексов состоит в обработке растворимого алкилмагния спиртом. Для того, чтобы иметь хороший баланс эффекта водорода и полимеризационной активности, отношение подачи MgR2/ROH должно быть больше, чем 1:2 и меньше, чем 1: 1, предпочтительно между 1:1.75 и 1:1,99 и наиболее предпочтительно между 1: 1,80 и 1: 1,98. Такое отношение не должно создаваться тотчас же, когда готовится магниевый комплекс, но может быть также создано и позднее, после импрегнации магниевого комплекса в носитель путем добавления достаточного количества MgR2. чтобы получить необходимое соотношение MgR2/ROH. Отношение между скоростью подачи и составом комплекса может быть получено из стехиометрии следующих уравнений
MgR''2 + pR'''OH - - - > Mg(OR''')pR''2-p+pR''H
где p - число молей R'''OH на один моль MgR''2. В качестве магниевого комплекса предпочтителен продукт реакции ди-C2-C20 - алкилмагния (предпочтительно дибутилмагния, бутилэтилмагния или бутилоктилмагния) и спирта. В качестве магниевого комплекса предпочтителен продукт реакции диалкилмагния и спирта с разветвленной цепью, более предпочтителен 2 - алкилалканол, наиболее предпочтителен 2 - этилгексанол или 2 - пропилпентанол. Титановым соединением может быть хлорированный алкоголят, т.е. TiCl3

ClxTi(OR(IV))4-x (2)
В комплексе (2) RIV - это C2-C20 углеводородный радикал и x = 3 или 4, предпочтительно 4. Соединение Ti должно быть полностью растворимо в неполярном углеводороде при используемой температуре. Если используется чистый TiCl4, нет необходимости добавлять углеводород, т.к. этот реактив представляет собой жидкость. Алкилметаллхлорид, обладающий также сокаталитическим свойством, может быть помещен на материале носителя как первый химикат в этом синтезе катализатора. Предпочтительно, чтобы молярное соотношение между алкилметаллхлоридом и поверхностными гидроксилами неорганического оксида было больше 1, предпочтительно между 1 и 1,5. Равномерное осаждение достигается в том случае, когда вязкость агента или его раствора ниже 10 м




Формула изобретения

А - полимеризационная активность в кгПЭ/гкат.ч;
MFR2 - скорость течения расплава в г/мин при нагрузке 2,16 кг согласно стандарту И СО 1133 (ISO 1133),
отсутствие верхнего индекса ' означает полимеризацию с низкой скоростью течения расплава, наличие верхнего индекса ' означает полимеризацию с высокой скоростью течения расплава. 2. Прокатализатор по п. 1, отличающийся тем, что указанный баланс активности АВ>5. 3. Прокатализатор по п.1 или 2, отличающийся тем, что указанные заданные условия полимеризации следующие: 1,8 л очищенного н-пентана вводятся в 3 л реактор и нагреваются до температуры 90oC. Отдельная 500 мл емкость заполняется водородом до давления 500 кПа, когда полимеризация проводится в условиях низкой скорости течения расплава, и до 1750 кПа, когда полимеризация проводится в условиях высокой скорости течения расплава. Когда температура в реакторе достигает 90oC, его давление составляет приблизительно 420 кПа. Затем в реактор вводят прокатализатор и триэтилалюминиевый сокатализатор в мольном отношении AL:Ti, равном 15:1. Затем через указанную отдельную емкость в реактор подается поток этилена. Общее давление поднимается до 1440 кПа и удерживается постоянным с помощью подачи этилена. Полимеризация продолжается 1 ч, после чего этиленовый полимер извлекается и определяются выход полиэтилена, значение MFR2 и на основании выхода и количества использованного прокатализатора вычисляется его активность. 4. Прокатализатор для производства этиленовых полимеров, включающий неорганический носитель, соединения хлора, магния и титана на указанном носителе, отличающийся тем, что он получен по способу, состоящему из следующих операций: а) неорганический носитель взаимодействует с алкилметалхлоридом с общей формулой
(RnMеCl3-n)m, (1)
где R - алкильный радикал с C1-С10;
Ме - металл из группы III(13) Периодической системы элементов;
n=1 или 2,
m=1 или 2;
при этом образуется первый реакционный продукт, б) первый реакционный продукт взаимодействует с соединением или смесью, содержащей гидрокарбил, гидрокарбилоксид и магний, при этом образуется второй реакционный продукт, с) второй реакционный продукт взаимодействует с соединением титана, которое содержит хлор, с общей формулой
ClхTi(ORIV)4-х, (2)
где RIV - гидрокарбильный радикал C2-С20;
х=3 или 4,
при этом образуется указанный прокатализатор. 5. Прокатализатор по п.4, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний, на указанной операции (б) имеет следующую формулу или состав
Mgа(OR1)bR''сХd,
где R' - гидрокарбильный радикал C2-С20, содержащий или не содержащий гетероэлемент;
R'' - гидрокарбильный радикал C2-С20;
Х - галоген, предпочтительно хлор;
а


Mg(OR''')р(R'') 2-р, (4)
Mg(OCOR''')р(R'')2-р, (5)
Mg(O-CH2-OR''')р(R'')2-р, (6)
где R''' - гидрокарбильный радикал C2-С20, предпочтительно линейный или разветвленный алифатический или ароматический радикал C2-С20;
R'' - указанный C2-С20-алкильный радикал;
1<p<2, предпочтительно 1,78<p<1,99, наиболее предпочтительно 1,80<p<1,98.
' или R''' - неразветвленный алифатический радикал C2-С20, предпочтительно алифатический радикал C4-С20, разветвленный в 2-положении по отношению к кислороду, наиболее предпочтительно 2-низший радикал алкил-C3-С19-алкил, такой как 2-этилгексил или 2-пропилпентил.
9. Прокатализатор по любому из пп.4-8, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний на указанной операции (б), являются продуктом взаимодействия диалкилмагния и спирта. 10. Прокатализатор по любому из пп.4-9, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний на указанной операции (б) являются продуктом взаимодействия ди-C2-С10 -алкилмагния, предпочтительно дибутилмагния, бутилэтилмагния или бутилоктилмагния, и спирта. 11. Прокатализатор по любому из пп.4-10, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний на указанной операции (б), являются продуктом взаимодействия между диалкилмагнием и разветвленным спиртом, предпочтительно 2-алкилалканолом, наиболее предпочтительно 2-этилгексанолом или 2-пропилпентанолом. 12. Прокатализатор по любому из пп.4-11, отличающийся тем, что соединение или смесь, содержащие гидрокарбид, гидрокарбилоксид и магний на указанной операции (б), являются продуктом взаимодействия между диалкилмагнием и спиртом, при этом диалкилмагний и спирт взаимодействуют при мольном отношении 1:1,78 - 1:1,99, предпочтительно 1:1,80 - 1:1,98. 13. Прокатализатор по любому из пп.4-12, отличающийся тем, что соединение или смесь на указанной операции (б), содержащие гидрокарбил, гидрокарбилоксид и магний, взаимодействуют с первым реакционным продуктом, так, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний, находятся в углеводородном растворе, предпочтительно углеводородном растворе, вязкость которого меньше 10 мПас. 14. Прокатализатор по любому из пп.4-13, отличающийся тем, что он изготовлен по способу, на указанной операции (а) которого неорганическим носителем является неорганический окисел, предпочтительно двуокись кремния (кремнезем), который имеет поверхностные гидроксильные группы. 15. Прокатализатор по п.14, отличающийся тем, что неорганическим носителем служит неорганический носитель, преимущественно кремнезем, у которого часть поверхностных гидроксильных групп удалена, преимущественно кремнезем, содержащий не более 2 ммоль поверхностных гидроксильных групп на грамм кремнезема. 16. Прокатализатор по п.14 или 15, отличающийся тем, что неорганический оксид на указанной операции (а), содержащий поверхностные гидроксильные группы, взаимодействует с алкилметаллхлоридом, так что мольное отношение между алкилметаллхлоридом и поверхностными гидроксилами неорганического оксида составляет не менее 1, предпочтительно 1-1,5. 17. Прокатализатор по любому из пп.4-16, отличающийся тем, что он изготовлен по способу, на операции (а) которого неорганический носитель взаимодействует с алкилметаллхлоридом, который является алкилалюминийхлоридом, предпочтительно низшим алкилалюминийхлоридом, наиболее предпочтительно этилалюминийдихлоридом. 18. Прокатализатор по любому из пп.4-17, отличающийся тем, что он изготовлен по способу, на операции (а) которого неорганический носитель взаимодействует с алкилметаллхлоридом так, что алкилметаллхлорид находится в виде 5-25% углеводородного раствора, вязкость которого предпочтительно меньше 10 мПас. 19. Прокатализатор по любому из пп.4-18, отличающийся тем, что количество соединения или смеси, содержащих гидрокарбил, гидрокарбилоксид и магний на указанной операции (б) и алкилметаллхлорид на указанной операции (а) таковы, что отношение атомов магния и хлора в алкилметаллхлориде составляет 1:1,0 - 1:2,5, предпочтительно 1:1,5 - 1:2,0. 20. Прокатализатор по любому из пп.4-19, отличающийся тем, что в качестве соединения титана на указанной операции (с) используют тетрахлорид титана. 21. Прокатализатор по любому из пп.4-20, отличающийся тем, что соотношение между соединением титана на указанной операции (с) и соединением или смесью, содержащими гидрокарбил, гидрокарбилоксид и магний на указанной операции (б) таково, что отношение атомов титана и магния Ti:Mg составляет 0,1 - 1,0, предпочтительно 0,1 - 0,7. 22. Способ изготовления прокатализатора для производства полимеров этилена, причем указанный прокатализатор содержит неорганический носитель, соединения хлора, магния и титана на указанном носителе, отличающийся тем, что он включает следующие операции: а) взаимодействие неорганического носителя с алкилметаллхлоридом общей формулы(RnMеCl3-n)m, (1)
где R - алкильный радикал C1-С20;
Ме - металл из группы III(13) Периодической системы элементов;
n=1 или 2 и m=1 или 2,
при этом образуется первый реакционный продукт, б) взаимодействие первого реакционного продукта с соединением или смесью, содержащей гидрокарбил, гидрокарбилоксид и магний, при этом образуется второй реакционный продукт, с) взаимодействие второго реакционного продукта с соединением титана, которое содержит хлор и имеет общую формулу
ClхTi(ORIV)4-х, (2)
где RIV - гидрокарбильный радикал с C2-С20;
х=3 или 4,
при этом образуется указанный прокатализатор. 23. Способ по п.22, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний на указанной операции (б), имеют следующую формулу или состав
Mgа(ОR')bR''сХd, (3)
где R' - гидрокарбильный радикал C2-С20, содержащий или не содержащий гетероэлемент;
R'' - гидрокарбильный радикал с C2-С20;
Х - галоген, предпочтительно хлор;
а


Mg(OR''')р(R'')2-р, (4)
Mg(OCOR''')р(R'')2-р, (5)
Mg(O-CH2-OR''')р(R'')2-p, (6)
где R''' - гидрокарбильный радикал C2-С20, предпочтительно линейный или разветвленный алифатический или ароматический радикал;
R'' - указанный алкильный радикал C2-С20,
при этом 1<p<2, предпочтительно 1,78<p<1,99, наиболее предпочтительно 1,80<p<1,98.
' и R'' представлены разветвленным алифатическим радикалом C2-С20, предпочтительно алифатическим радикалом C4-С20, который разветвлен в 2-положении по отношению к кислороду, наиболее предпочтителен радикал 2-низший алкил-C3-С19 - алкил, такой как 2-этилгексил или 2-пропилпентил.
27. Способ по любому из пп.22-26, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний на указанной операции (б) являются продуктом взаимодействия между диалкилмагнием и спиртом. 28. Способ по п.27, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний на указанной операции (б), являются продуктом взаимодействия ди-C2-С10-алкилмагния, предпочтительно дибутилмагния, бутилэтилмагния или бутилоктилмагния, со спиртом. 29. Способ по п.27 или 28, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний на указанной операции (б), являются продуктом взаимодействия между диалкилмагнием и разветвленным спиртом, предпочтительно 2-алкилалканолом, наиболее предпочтительно 2-этилгексанолом или 2-пропилпентанолом. 30. Способ по любому из пп.27-29, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний на указанной операции (б), являются продуктом взаимодействия между диалкилмагнием и спиртом, причем диалкилмагний и спирт взаимодействуют при молярном отношении 1: 1,78-1:1,99, предпочтительно 1:1,80-1:1,98. 31. Способ по любому из пп.22-30, отличающийся тем, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний, взаимодействуют с первым реакционным продуктом так, что соединение или смесь, содержащие гидрокарбил, гидрокарбилоксид и магний, находятся в растворе углеводорода, предпочтительно в растворе углеводорода, вязкость которого ниже 10 мПас. 32. Способ по любому из пп.23-31, отличающийся тем, что неорганический носитель на указанной операции (а) является неорганическим оксидом, имеющим поверхностные гидроксилы, предпочтительно кремнеземом (диоксидом кремния). 33. Способ по п. 32, отличающийся тем, что в качестве неорганического носителя предпочтительно используют кремнезем, часть поверхностных гидроксильных групп которого удалена, предпочтительно кремнезем, содержащий не более 2,0 моль поверхностных гидроксильных групп на грамм кремнезема. 34. Способ по п.32 или 33, отличающийся тем, что на указанной операции (а) неорганический оксид, который содержит поверхностные гидроксильные группы, взаимодействует с алкилметаллхлоридом так, что мольное отношение алкилметаллхлорида и поверхностных гидроксилов неорганического оксида не менее 1, предпочтительно 1-1,5. 35. Способ по любому из пп.22-34, отличающийся тем, что на указанной операции (а) неорганический носитель взаимодействует с алкилметаллхлоридом, в качестве которого берут алкилалюминийхлорид, предпочтительно низший алкилалюминийхлорид, наиболее предпочтительно этилалюминийхлорид. 36. Способ по любому из пп.22-35, отличающийся тем, что на указанной операции (а) неорганический носитель взаимодействует с алкилметаллхлоридом, при этом алкилметаллхлорид берут в виде 5-25% раствора в углеводороде, вязкость которого предпочтительно ниже 10 мПас. 37. Способ по любому из пп.22-36, отличающийся тем, что количество соединений или смеси, содержащих гидрокарбил, гидрокарбилоксид и магний на указанной операции (б), и алкилметаллхлорида на указанной операции (а) таковы, что атомное соотношение между магнием и хлором в алкилметаллхлориде составляет 1:1-1:2,5, предпочтительно 1:1,5-1:2,0. 38. Способ по любому из пп.22-37, отличающийся тем, что в качестве соединения титана на указанной операции (с) берут тетрахлорид титана. 39. Способ по любому из пп.22-38, отличающийся тем, что количественное соотношение между соединением титана на указанной операции (с) и соединением или смесью, содержащими гидрокарбил, гидрокарбилоксид и магний на указанной операции (б), таково, что атомное отношение между титаном и магнием составляет 0,1<Ti:Mg<1, предпочтительно 0,1-0,7.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3