Способ определения заданного класса по крупности в кусковом материале, перемещаемом в технологическом потоке
Изобретение относится к исследованию или анализу материалов с помощью отраженного рентгеновского или гамма-излучения и может быть использовано для автоматического контроля гранулометрических характеристик перемещаемого в технологическом потоке кускового материала. Технический результат, получаемый при использовании изобретения, состоит в повышении точности определения контролируемого параметра. Повышенная точность достигается за счет того, что в качестве меры содержания в кусковом материале кусков выше заданного класса по крупности принята дисперсия измеряемой интенсивности отраженного от поверхности кускового материала излучения. Суть способа состоит в многократном измерении интенсивности обратноотраженного излучения в течение определенного времени, расчете дисперсии измеряемой интенсивности и определении содержания заданного класса крупности по эталонировочному графику зависимости содержания от дисперсии. 3 ил.
Изобретение относится к исследованию или анализу материалов с помощью отраженного рентгеновского или гамма-излучения и может быть использовано для автоматического контроля гранулометрических характеристик перемещающегося в технологическом потоке кускового материала.
Известен способ автоматического контроля гранулометрического состава перемещаемых в технологическом потоке материалов, согласно которому перемещаемый материал облучается осветителем, создавая на поверхности световой рельеф в виде чередующихся освещенных кусков и затемненных участков между ними, сканируют полученный рельеф фотоприемником, выходные сигналы которого при постоянной скорости перемещения материала пропорциональны размерам кусков, пересекаемых линией сканирования. Далее сигналы селектируют по длительности и, пройдя соответствующие аппаратурные преобразования, выдают в виде процентного содержания кусков соответствующего интервала размеров. Эффективность применения известного способа существенно зависит от состояния поверхности материала, влияющей на отражение света. Из-за текстурных особенностей часть кусковых материалов плохо отражает свет, куски имеют разный микрорельеф граней, на которые оседает пыль, что также приводит к большой вариации углов отражения света и самой отражательной способности. Влияние этих факторов снижает точность измерения. Известен способ автоматического контроля гранулометрических характеристик кускового материала, движущегося на ленточном конвейере, в котором использовано направленное электромагнитное излучение. Над движущимся кусковым материалом устанавливают открытый колебательный контур, который в автогенераторном режиме излучает на поверхность материала ограниченный окном пучок электромагнитного излучения в диапазоне частот от 100 МГц и выше, включая оптический. Измеряя напряженность электрического поля и исследуя зависимость ее от характера распределения плотности и формы свободной поверхности материала, проходящего под контуром, судят о размере куска. При этом принимают, что напряженность поля изменяется за счет существенного изменения рельефа и мгновенной плотности вещества в зоне контроля. Размер окна электромагнитного контура, а значит и ширину пучка излучения, выбирают в соответствии с размером контролируемого куска. Общими с предложенным техническим решением признаками являются облучение поверхности материала, измерение отраженного сигнала и определение градуировочной зависимости контролируемого параметра от выходного сигнала приемника отраженного излучения. Недостаток способа в том, что в указанном диапазоне частот электромагнитное излучение не имеет четко обозначенных границ и один крупный или несколько мелких кусков, попавших в контролируемую зону, могут вызвать одинаковое изменение напряженности электрического поля. Также одинаковый физический эффект может получаться при изменении лишь одного фактора: плотности крупного куска или рельефа поверхности, составленной более мелкими кусками. Данные обстоятельства снижают точность определения размера куска, а зависимость размера окна электромагнитного контура от размера контролируемого куска является причиной невозможности применения контура одной конструкции при изменении крупности контролируемой фракции кускового материала. С учетом недостатков известных способов задачу, решаемую предлагаемым способом, можно сформулировать как расширение функциональных возможностей. Технический результат, получаемый при использовании способа, состоит в повышении точности определения контролируемого параметра. Указанный технический результат получают за счет того, что в известном способе автоматического контроля гранулометрических характеристик кускового материала, включающем облучение его поверхности направленным электромагнитным излучением, измерение интенсивности обратноотраженного излучения и расчет содержания с использованием результата измерения, зонд, содержащий источник коллимированного узкого пучка рентгеновского или гамма-излучения и детектор обратно отраженного излучения, устанавливают на расстоянии по вертикали от плоскости, проходящей через центры кусков верхнего слоя кускового материала, не ниже do + 0,5





Поэтому точность определения содержания заданного класса по крупности предложенным способом при одинаковом количестве измерений в



где
Q - активность источника излучения;
S - площадь детектора;





h - расстояние по вертикали от источника до поверхности материала;
z - расстояние по вертикали от поверхности материала до элемента его объема dV;
L - расстояние по горизонтали от элемента объема dV до вертикальной оси z, проходящей через источник. В цилиндрической системе координат имеем
dV = LdLd











в котором с учетом узости пучка излучения примем L пренебрежимо малой длиной по сравнению с (h+z). Кроме того, глубина проникновения излучения в материал составляет несколько миллиметров, что намного меньше размера ее куска. Поэтому результат интегрирования не изменится, если принять z0 __



результат интегрирования которого имеет вид

где
Ei{-










С учетом этого получаем

где
K - коэффициент пропорциональности,

Интенсивность излучения 1 измеряют в течение времени, за которое кусок среднего размера пересекает пучок излучения. Принимая размер куска приближенно одинаковым по всем направлениям и обозначив H - расстояние по вертикали от зонда, содержащего источник и детектор излучения, до плоского сечения, проходящего через центры кусков верхнего слоя материала, получим за время измерения h = H = d/2, где d - размер куска. При этом плотность кускового материала с учетом коэффициента разрыхления 1+







Изменение интенсивности излучения



в которой должно выполняться граничное условие





Из последнего выражения следует, что по мере увеличения размера куска дисперсия Dd также увеличивается, а максимальный размер куска не должен превышать значения 2d0+1/



где
d-- средний размер куска,
v - скорость перемещения материала под пучком излучения. В каждом i-измерении регистрируется отсчет Ni, после чего рассчитывают интенсивность излучения Ii = Ni/t. По результатам измерений рассчитывают для каждого цикла стандартную дисперсию D

где

Ii - интенсивность излучения рядового i-измерения;

Формула изобретения
do+ 0,5

где do - средний размер кусков при отсутствии в материале кусков вышеуказанного класса по крупности;

проводят несколько циклов измерений на эталонном материале с разным содержанием заданного класса по крупности, измеряя в каждом цикле многократно интенсивность обратноотраженного излучения за время, в течение которого кусок среднего по всем циклам размера пересекает пучок излучения, рассчитывают дисперсию измеряемой интенсивности излучения, строят эталонировочный график зависимости дисперсии от известного содержания заданного класса по крупности, а затем многократно измеряют интенсивность обратноотраженного излучения контролируемого кускового материала в течение времени, равном времени измерения на эталонном материале, рассчитывают дисперсию измеряемой интенсивности излучения и по эталонировочному графику определяют содержание заданного класса по крупности.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3