Способ запуска управляемой ракеты и устройство для его осуществления
Изобретение относится к ракетной технике. Способ запуска ракеты заключается в разгоне ракеты с помощью двигателя с одновременной раскруткой ее с помощью двигателя и аэродинамических поверхностей. При этом момент сил раскрутки, создаваемый двигателем, уменьшают в процессе разгона ракеты. Способ осуществляется ракетой, содержащей двигатель с соплами и косопоставленными аэродинамическими поверхностями. При этом сверхзвуковые части сопел выполнены из эрозирующего материала. Оси этих частей сопел смещены относительно критических сечений сопел в сторону, противоположную вращению ракеты. Использование изобретения позволяет уменьшить разброс величины угловой скорости вращения ракеты и за счет этого повысить точность управления ракетой на разгонном участке. 2 с.п.ф-лы, 4 ил.
Изобретение относится к ракетной технике, более конкретно к способам запуска и конструкции управляемых ракет.
В настоящее время одной из актуальных задач проектирования малогабаритных летательных аппаратов является снижение начальной скорости полета, которая позволяет улучшить эксплуатационные характеристики изделия (например создает возможность стрелять из закрытых помещений). Вместе с тем, при решении указанной задачи необходимо учитывать обстоятельства, связанные с обеспечением допустимого рассеивания изделий к моменту начала управления в условиях повышения чувствительности изделия к возмущениям и несимметрии планера, вызванного уменьшением начальной скорости изделия. К факторам, способным изменить чувствительность изделия (в частности, к эксцентриситету двигательной установки и несимметрии планера), относится угловая скорость вращения ракеты по крену. Известен способ запуска управляемой ракеты, включающий запуск двигателя ракеты и ее разгон под действием силы тяги двигателя с одновременной раскруткой ракеты относительно ее продольной оси под действием момента, создаваемого специальным устройством, описанным в [1]. Описанное устройство включает в себя натяжной трос, закрепленный на месте запуска и разматываемый с катушки, установленной в хвостовой части ракеты. Указанный трос используется также для передачи сигналов управления от поста наведения к снаряду. Стабилизация ракеты обеспечивается во время полета за счет воздействия натяжного троса на хвостовую часть ракеты при его разматывании с катушки. Однако такой способ стабилизации ракеты имеет ряд недостатков. Во-первых, описанный способ стабилизации ракеты целесообразно применять в ракетах, использующих проводную систему наведения, где натяжной трос служит также проводом для передачи сигналов управления. В ракетах же с лучевой системой наведения применение натяжного троса для стабилизации ракеты приводит к увеличению пассивной массы ракеты, увеличению габаритных размеров и как следствие к ухудшению характеристик ракеты. Во-вторых, описанный способ стабилизации не эффективен на начальном участке траектории ракеты, когда скорость полета, а следовательно, и скорость разматывания троса невелики. Известен способ запуска управляемой ракеты, включающий запуск двигателя ракеты и ее разгон под действием силы тяги двигателя с одновременной раскруткой ракеты относительно ее продольной оси под действием момента, создаваемого аэродинамическим силами. Данный способ реализуется в ракете "Милан", снабженной разгонно-маршевым двигателем и косопоставленными крыльями [2]. После запуска ракета разгоняется под действием разгонно-маршевого двигателя и раскручивается относительно продольной оси ракеты за счет взаимодействия косопоставленных крыльев с набегающим потоком воздуха. Известно, что система управления ракеты устойчиво работает в определенном интервале угловой скорости вращения, причем очевидно, что наибольшая точность управления обеспечивается при нахождении угловой скорости в заданном интервале. Однако при наличии жесткозакрепленных косопоставленных крыльев угловая скорость вращения оказывается переменной и находится в прямой зависимости от текущей скорости полета ракеты. Таким образом, на разгонном участке (особенно в начале полета) система управления работает вне пределов заданного интервала угловой скорости ракеты и обеспечивает низкую точность управления. Известен также газодинамический способ стабилизации ракеты, который использует истечение продуктов сгорания топлива через косопоставленные сопла или специальные отверстия [3] . Продукты сгорания, истекая из косопоставленных сопел или специальных наклонных отверстий, придают ракете вращательное движение относительно ее продольной оси в сторону, противоположную истечению. Такая конструкция позволяет стабилизировать ракету на начальном участке траектории, однако она обладает рядом недостатков. Во-первых, проворачивание ракеты относительно ее продольной оси осуществляется только во время работы двигателя, а после его выключения вращательное движение ракете не придается. Следовательно, на пассивном участке траектории ракета может потерять устойчивость. Во-вторых, применение косопоставленных сопел или специальных наклонных отверстий приводит к ухудшению характеристик ракеты (уменьшению скорости полета, дальности), так как радиальная составляющая тяги создается в течение всего времени работы двигателя. Целью предлагаемого изобретения является повышение точности управления ракетой на разгонном участке путем стабилизации угловой скорости вращения ракеты. Поставленная цель достигается тем, что согласно способу запуска управляемой ракеты включающему запуск двигателя ракеты и ее разгон под действием тяги двигателя с одновременной раскруткой ракеты относительно ее продольной оси под действием момента, создаваемого двигателем и аэродинамическими силами, момент, создаваемый двигателем, уменьшают в процессе работы двигателя. Предлагаемое решение иллюстрируется графическим материалом, где на фиг. 1 изображены зависимости числа оборотов ракеты по времени при различных способах реализации этого вращения, на фиг. 2 изображен общий вид ракеты, на фиг. 3 - поперечное сечение ракеты по месту смещения сверхзвуковых частей сопел, на фиг. 4 - продольное сечение ракеты по месту смещения сверхзвуковых частей сопел. Известно линеаризованное уравнение движения ракеты в канале крена (см., например, [4]).






q - скоростной напор,


V - скорость набегающего потока воздуха,
S, L - характерная площадь и длина соответственно. При установившейся угловой скорости вращения по крену

Поскольку движения по крену, вызванные крутящим моментом от крыла и двигателя, независимы - их можно разделить. Рассмотрим установившееся движение по крену, вызванное крутящим моментом от двигателя

Принимая во внимание (2)

Аналогично для косопоставленного оперения

Увеличение до определенных пределов
















1. Патент Франции N 2151890, МКИ5 F 42 b 15/00// F 42 b 10/00. 2. Журнал L'Arme'e, 1969, апрель N 86 стр. 62-65. 3. В.В.Рожков "Ракетные двигатели твердого топлива", Военное издательство министерства обороны СССР, Москва, 1963 г, стр. 18-19, рис. 2б. 4. А. А. Лебедев, Л.Е.Чернобровкин "Динамика ракеты", М., 1973 г., стр. 592.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4