Нейтронный детектор
Изобретение относится к детекторам быстрых нейтронов и может быть использовано, например, для реализации метода регистрации скрытых взрывчатых веществ и наркотиков. Технический результат заключается в улучшении эксплуатационных характеристик детектора путем определения трех координат первого взаимодействия нейтрона с материалом волокон. Детектор быстрых нейтронов содержит волоконный модуль, собранный из слоев полимерных сцинтиллирующих оптических волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, и электронно-оптическую систему регистрации оптического излучения. Диаметр отдельных волокон выбран из соображения D ~ L/2, где L - длина свободного пробега протона отдачи в материале волокна. Электронно-оптическая система регистрации выполнена в виде позиционно-чувствительных фотоприемников, оптически сопряженных с соответствующими им гранями параллелепипеда. Длина слоев волоконного модуля в каждом из направлений равна размеру соответствующей грани этого волоконного модуля. Электронно-оптическая система детектора содержит локальные оптические подсистемы, ставящие в соответствие каждому волокну соответствующий элемент позиционно-чувствительного фотоприемника. 1 з.п. ф-лы, 1 ил.
Изобретение относится к детекторам быстрых нейтронов и может быть использовано, например, для реализации метода регистрации скрытых взрывчатых веществ и наркотиков [1].
Известно, что большинство веществ, представляющих интерес для неразрушающего анализа и контроля, в том числе органических веществ, характеризуется наличием в их составе водорода, азота, углерода, кислорода и ряда легких химических элементов с атомными массами до 30. Химический состав таких веществ характеризуется определенными соотношениями между количеством ядер легких химических элементов. Присутствие некоторых из них, в частности азота, используется для обнаружения взрывчатых веществ, например, в багаже пассажиров с целью обеспечения безопасности перевозок. Различия в ядерных свойствах легких химических элементов позволяют использовать различные ядерно-физические методы неразрушающего анализа для обнаружения, например, органических веществ и определения их пространственного расположения в содержимом различных объектов, например упаковок, без их вскрытия. Одним из известных ядерно-физических методов, позволяющих использовать различия в ядерно-физических свойствах легких элементов для обнаружения и анализа веществ, в том числе взрывчатых веществ и наркотиков, является метод, основанный на регистрации упруго рассеянных объектов тестирующих нейтронов. В любом варианте такого метода необходим позиционно чувствительный нейтронный детектор с высокими характеристиками. Известен позиционно чувствительный детектор нейтронов, содержащий волоконный модуль из полимерных сцинтиллирующих оптических волокон и систему регистрации оптического излучения, выходящего из торцов волокон [2]. К недостаткам этого детектора следует отнести невозможность определения полных параметров траектории полета нейтрона по двум координатам, что связано с существенно двухмерной структурой набора волокон, анизотропия которой определяется направлением укладки оптических сцинтиллирующих волокон. Наиболее близким к предлагаемому изобретению является "Твердотельный детектор ядерных излучений большой площади с высоким пространственным разрешением", описанный в Патенте США [3], содержащий волоконный модуль, собранный из слоев полимерных сцинтиллирующих оптических волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, и электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон, содержащую фотоприемники, причем торцы волокон расположены в плоскостях граней волоконного параллелепипеда, образуемого слоями волокон, а электронно-оптическая система регистрации выполнена в виде позиционно-чувствительных фотоприемников, оптически сопряженных с соответствующими им гранями параллелепипеда. Кроме того, детектор содержит участки волокон, оптически соединяющие вышеупомянутые грани параллелепипеда с фотоприемниками (переходные жгуты). К недостаткам указанного детектора можно отнести: - неясность физических механизмов, происходящих в сцинтиллирующих оптических волокнах при регистрации ядерных излучений. Авторы неправомерно обобщают возможности регистрации гамма-квантов и нейтронов. Механизмы взаимодействия





Eph - энергия фотона;


Kabs - усредненный коэффициент оптического поглощения волокон;
Kopt - коэффициент пропускания оптического канала;
Гsp - коэффициент деления полупрозрачной пластины;
Kabs = 10((Lf/2)k[dB/m]/10);
k[dB/m] - коэффициент оптического поглощения волокна в спектральном диапазоне люминесценции;
Lf - размер волоконного блока в направлении длины волокон;
Kopt = (1 -

nos - количество оптических поверхностей вдоль траектории светового луча в оптической системе детектора;

Общая толщина набора слоев оптических волокон выбирается из соображения
H ~L, (2)
где
L - длина пробега регистрируемого нейтрона в материале волокон. Диаметр отдельного волокна выбирается из соображения
D ~l/2, (3)
где
l - длина пробега протона отдачи в материале волокна. На фиг. 1 представлена оптическая схема предлагаемого устройства, где
1 - волоконный модуль;
2 - позиционно чувствительный фотоприемник;
3, 4 - рабочие грани волоконного модуля;
5 - локальная оптическая подсистема;
6 - полупрозрачная пластина;
7 - быстродействующий фотоприемник. Предлагаемое устройство содержит волоконный модуль 1, собранный из слоев полимерных сцинтиллирующих оптических волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, и электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон, содержащую фотоприемники 2, которые являются позиционно чувствительными, причем длина слоев волоконного модуля 1 в каждом из направлений равна размеру соответствующей грани 3, 4 этого волоконного модуля, а полированные торцы волокон расположены в плоскостях граней волоконного параллелепипеда, образуемого слоями волокон, причем электронно-оптическая система детектора содержит локальные подсистемы 5, оптически сопрягающие взаимно перпендикулярные грани параллелепипеда с позиционно чувствительными фотоприемниками 2. Кроме того, в локальные оптические подсистемы 5 введены полупрозрачные пластины 6, ответвляющие часть оптической мощности на дополнительные быстродействующие фотоприемники 7. Предлагаемое устройство работает следующим образом. Быстрый нейтрон, траектория полета которого проходит через волоконный модуль детектора 1, вызывает появление протона отдачи в одном из полимерных волокон. Этот протон, в свою очередь, вызывает ионизационную генерацию фотонов в материале волокна. В силу выполнения условия (3) генерация фотонов происходит по крайней мере в двух смежных слоях волокон. Генерация второго протона отдачи маловероятна в силу выполнения условия (2). Фотоны, распространяющиеся в пределах числовой апертуры полимерного волокна, становятся канализируемыми к выходным торцам этого волокна. Локальная оптическая подсистема 5 (фиг. 1) ставит в соответствие каждому волокну набора соответствующий элемент позиционно чувствительного фотоприемника 2. Таким образом происходит регистрация одной из координат упругого взаимодействия нейтрона с материалом детектора. Вторая координата регистрируется аналогичным образом вторым позиционно чувствительным фотоприемником 2, оптически сопряженным с другой гранью оптоволоконного параллелепипеда. Для точной регистрации момента первого взаимодействия регистрируемого нейтрона с материалом волоконного модуля используется дополнительный оптический тракт, образуемый полупрозрачной пластиной 6, введенной в тракт локальной оптической подсистемы и быстродействующим фотоприемником 7. В примере конкретного выполнения устройства волоконный модуль выполнен из полимерного волокна полистирол - полиметилметаакрил. Диаметр отдельного волокна выбирается из соображения
D ~l/2, (3)
где
l - длина свободного пробега протона: ~2 мм для E = 14 МэВ;
исходя из этого выбираем диаметр волокон из стандартного ряда коммерчески доступных - 0,4 мм. Химический состав волокон:
Полистирол - n(C8H9)
PMMA - n(C5H6O2)
Показатели преломления: n = 1,49 ... 1,59 (жила); n = 1,406 ... 1,49 (оболочка);
Числовая апертура: N.A. = (n21-n22)0,5 ; N.A. = 0,45 ... 0,72
Оптическое поглощение: 0,2 ... 2,0 дБ/м в диапазоне длин волн люминесценции. Временная неопределенность, возникающая из-за разброса времени прихода светового импульса от места взаимодействия нейтрона с материалом волокна до выходного торца ("джиттер"), может быть оценена следующим образом:
Для многомодовых волокон
(2


где
N.A. - числовая апертура волокна;

dt/L = n1/c(n21-n22)/2n21, (4)
где
n1 и n2 - показатели преломления жилы и оболочки соответственно, для (n1-n2)~0,1 dt/L ~0,1 нс/м. В качестве позиционно чувствительных фотоприемников 2 используются видиконы типа ЛИ-471 с квантовой эффективностью фотослоя в диапазоне люминесценции более 95%;
Оптическая схема локальной оптической подсистемы 5 содержит три компоненты. Необходимая толщина модуля выбирается из соображения:
H ~L, (2)
где
L - длина пробега регистрируемого нейтрона в материале волокон (~15 см для достижения 90% эффективности регистрации 14 МэВ). Ширина граней 3 и 4 волоконного модуля: 300 и 500 мм. Энергетическая эффективность преобразования: ~2,4%. Спектральный диапазон люминесценции: 400...500 нм. Время высвечивания: (1...3)


N = 123 фотона/МэВ, что вполне достаточно для нормальной регистрации современными позиционно чувствительными фотоприемниками. Сравнение предложенного устройства и прототипа показывает, что первое позволяет регистрировать быстрые нейтроны диапазона энергий 1 - 14 МэВ с высокой эффективностью, определяя при этом все три пространственные координаты первого взаимодействия регистрируемого нейтрона с материалом волоконного модуля детектора, а также осуществляя точную временную привязку регистрируемого события, что не может быть достигнуто при использовании прототипа. Источники информации. 1. Заявка на изобретение N 96112738/25 от 24.06.96 г., решение о выдаче патента от 06.01.97 г. Авторы изобретения: Мостовой В.И., Румянцев А.Н., Сухоручкин В. К. , Яковлев Г.В. Название изобретения: "Способ обнаружения и неразрушающего анализа веществ, содержащих ядра легких элементов". Номер международной заявки PCT/RU96/00315 от 05.11.96 г. 2. Y. Yariv, R.C.Byrd, A.Gavron and W.C.Sailor. Simulations of neutron response and background rejection for a scintillating-fiber detector. Nuclear Instr. And Methods in Physics Research A292 (1990) 352-358. 3. Патент США N 4942302 МКИ G 01 T 1/2; G 01 T 1/172 Walter Koechner. Large area solid state nuclear detector with high spatial resolution. Unated State Patent N 4942302 - прототип.
Формула изобретения
РИСУНКИ
Рисунок 1