Способ измерения флюенса термоядерных нейтронов
Использование: в технике измерения параметров ионизирующих излучений, в частности при радиационных исследованиях на генераторах термоядерных нейтронов, для повышения точности измерений оперативности получения конечных результатов, а также для упрощения процесса измерений. Сущность изобретения: с помощью сцинтилляционного спектрометра с органическим кристаллом измеряют аппаратурные спектры без разделения нейтронного и гамма-излучений при размещении кристалла под углами по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла. При этом дискриминируют все сигналы с амплитудами меньшими, чем от протонов отдачи с максимальной энергией Ер = 14 МэВ. Флюенс термоядерных нейтронов определяют из математического выражения, основанного на поканальном суммировании разности полученных аппаратурных спектров. 1 ил.
Изобретение относится к технике измерения параметров ионизирующих излучений и может быть использовано при радиационных исследованиях с применением источников термоядерных нейтронов нейтронных генераторов.
Известен широкий набор способов регистрации нейтронов различных энергий, которые используют в том числе и для измерения флюенса нейтронов с Еn 14 МэВ. К ним относятся, например, применение пропорциональных счетчиков, камер деления [1] всеволнового счетчика Мак-Киббена [2] и др. Недостатки способов низкая точность измерения нейтронов с энергией Еn 14 МэВ из-за чувствительности к нейтронам других энергий и сопутствующему гамма-излучению. Поэтому их использование для решения ряда задач, например для мониторирования выхода генераторов термоядерных нейтронов в условиях размещения вокруг мишенного блока разнотипных исследуемых объектов, практически невозможно. Очевидно, что наиболее точным способом измерения флюенса термоядерных нейтронов является такой, при котором на фоне сопутствующего гамма-излучения выявляется пик нейтронов с энергией Еn 14 МэВ и регистрируется число нейтронов в этом пике. Наиболее близким по технической сущности и достигаемому результату к данному способу является способ, в котором используется сцинтилляционный спектрометр с органическим кристаллом [3] Суть известного способа заключается в следующем. При упругом рассеянии нейтронов и гамма-квантов в органическом кристалле возникают протоны отдачи и электроны соответственно, которые в свою очередь вызывают в веществе детектора сцинтилляции световые вспышки, амплитуда которых однозначно связана с энергиями протонов и электронов. Световая вспышка преобразуется с помощью фотоэлектронного умножителя (ФЗУ) в электрический импульс, который усиливается и регистрируется затем многоканальным амплитудным анализатором. Существуют специфические особенности световой вспышки, вызванной протоном или электроном, используя которые разделяют нейтронную и гамма-компоненту излучения. В многоканальном амплитудном анализаторе получают аппаратурные спектры нейтронного и гамма-излучений. Затем, используя достаточно сложные математические методы обработки, из аппаратурных спектров восстанавливают нейтронные и гамма-спектры. По площади пика нейтронов с энергией Еn 14 МэВ определяют флюенс термоядерных нейтронов в месте размещения детектора. Недостатком этого способа является использование сложной математической обработки для восстановления нейтронного и гамма-спектров, что понижает точность измерений и оперативность получения конечных результатов. Кроме того, многоканальный амплитудный анализатор имеет ограничение по интенсивности загрузки. В данном способе интенсивность загрузки в основном определяется сигналами, вызванными нейтронами более низких энергий, поэтому часть аппаратурного спектра, соответствующая нейтронам с энергией Еn 14 МэВ, имеет малую статистику, что также понижает точность конечных результатов и значительно увеличивает время, необходимое для проведения измерений. Изобретение направлено на повышение точности и оперативности получения конечных результатов, упрощение процесса измерений. Технический результат достигается тем, что измеряют аппаратурные спектры без разделения нейтронного и гамма-излучений при размещении кристалла под углами по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла, дискриминируют при этом все сигналы с амплитудами меньшими, чем от протонов отдачи с максимальной энергией Ер 14 МэВ, а флюенс термоядерных нейтронов определяют из выражения:

исключить математическую обработку аппаратурных спектров, тем самым по совокупности с п.2 повысить точность измерений и оперативность конечных результатов. Cпособ осуществляется следующим образом. C помощью сцинтилляционного спектрометра, состоящего, например, из монокристалла стильбена размером 40х40 мм, ФЭУ-93 и многоканального амплитудного анализатора АИ-1024-95, измеряют аппаратурный спектр при размещении кристалла под углом 0o по отношению к направлению на источник. При этом выставляют уровень дискриминации такой, чтобы загрузка анализатора производилась сигналами с амплитудами, соответствующими протонам отдачи с максимальной энергией Eр=14 МэВ (окончание плато аппаратурного спектра). Затем за тоже время и при том же уровне дискриминации измеряют аппаратурный спектр при размещении кристалла под углом 90 o по отношению к направлению на источник. Используя выражение (1), определяют флюенс термоядерных нейтронов. Коэффициент пропорциональности (к), используемый в выражении (1), определяют перед началом измерений в процессе калибровки спектрометра для конкретного его месторасположения.
Формула изобретения

где Ф флюенс термоядерных нейтронов;
К постоянный коэффициент, зависящий от геометрии размещения, размеров и анизотропных свойств кристалла, определяется при калибровке спектрометра;
Nmiax, Nmiin аппаратурные спектры при размещении кристалла под углами по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла;
i номер канала анализатора,
iпор номер канала анализатора, соответствующий порогу дискриминации.
РИСУНКИ
Рисунок 1