Способ стереоселективного синтеза хиральных аминов
Изобретение касается способа стереоселективного синтеза одной хиральной формы амина в количестве, существенно превосходящем другую форму, путем воздействия на кетон ферментом омега-аминокислотной трансаминазой в присутствии донора аминогруппы. Донор аминогруппы используют в значительном молярном избытке. Кетон и донор аминогруппы приводят во взаимодействие с целыми клетками микроорганизма, которые продуцируют омега-аминокислотную трансаминазу, или с водным раствором фермента, или с ферментом, иммобилизованным на носителе. Способ может использоваться в химических технологиях при производстве фармацевтических и агрохимических препаратов. 5 з.п. ф-лы, 1 табл.
Изобретение касается стереоселективного синтеза хиральных аминов.
Известно, что биологическая активность химических продуктов, таких как фармацевтические и агрохимические препараты, обладающие хиральным центром, часто присуща в основном одной из возможных хиральных форм. Поскольку большинство химических синтезов по существу не являются стереоселективными, то возникает серьезная химическая технологическая проблема. Многие из хиральных соединений этого типа являются аминами. Кроме того, из-за своей синтетической универсальности амины также являются хорошими объектами для разделения, после которого может быть эффективно осуществлено стереоселективное превращение в хиральное соединение. Химическое получение хирального амина, свободного от его энантиомера, до сих пор было главным образом основано на разделении смеси двух хиральных форм посредством образования диастереоизомерных производных, таких как соль хиральной кислоты, стереоселективных синтезах или использовании хиральных хроматографических колонок (патент США N 3944608 и EP-A 36265). Некоторые структурные типы аминов поддаются ферментативному разделению. Ферментативные реакции, включающие альфа-аминокислоты, хорошо известны, и их предполагалось использовать для получения стереорегулярных образцов. В патенте США N 3871958, например, описано ферментативное получение альфа-аминокислоты-серина - взаимодействием альдегида с глицином в присутствии треонинальдолазы, полученной из образцов E. coli, а также родственный синтез серинола с использованием этаноламина. Относительно мало сообщалось о ферментативных реакциях для аминокислот, в которых аминогруппа не соседствует с карбоксильной группой. Йонаха и др. (Agric. Biol. Chem., 42, (12), 2363-2367 (1978)) описывают омега-аминокислотную пируват-трансаминазу, обнаруженную в образцах Pseudomonas, для которой пируват был единственным аминным акцептором. Этот фермент, который ранее был кристаллизован и охарактеризован (Йонаха и др., Agric. Biol. Chem., 41 (9), 1701-1706 (1977)), имел низкую специфичность по субстрату для омега-аминокислот, таких как гипотаурин, 3-аминопропансульфонат, бета-аланин, 4-аминобутират и 8-аминооктаноат, и катализировал переаминирование между первичными аминоалканами и пируватом. Накано и др. (J. Biochem., 81, 1375-1381 (1977)) идентифицировали две омега-аминокислотных трансаминазы в B. cereus: бета-аланин-трансаминазу, которая соответствует омега-аминокислота: пируват-трансаминазе, описанной Йонахой и др., и -аминобутират-трансаминазе. Они могут быть различны по своим резко отличным активностям по отношению к бета-аланину (100 против 3) и к -аминобутирату (43 против 100) соответственно, а также по своим различным требованиям к аминному акцептору. Бернетт и др. (J.C.S. Chem. Comm., 1979, 826-828) предположили, что омега-аминокислотная пируват-трансаминаза и -аминобутират-трансаминаза характеризуются различной предпочтительностью по отношению к двум концевым атомам в -аминобутирате, меченном тритием. Танизава и др. (Biochem., 21, 1104-1108 (1982)) исследовали бактериальную L-лизин-





R,S-Фенил-3-аминобутан - 30
Пиродоксальфосфат - 0,5
Образец удаляют и добавляют 20 об.% водного раствора трихлоруксусной кислоты с концентрацией 12%. Выпавший в осадок белок удаляют центрифугированием и определяют концентрацию 1-фенилбутан-3-она в надсадочной жидкости с помощью жидкостной хроматографии на 4-мкм колонке типа Novopak phenyl, 100 x 8 мм, элюируя 40% изопропанола и 0,09% фосфорной кислоты в воде. При этих условиях 1-фенилбутан-3-он элюируется за 5,3 мин. Чистота аминов. Чистоту продуцируемых аминов определяли с помощью газовой хроматографии на колонке типа Chrom Q размером 6 фут х 2 мм с 10% жидкой фазы марки E-30 на носителе с размером частиц 100/120 меш при 210oC и скорости несущего газового потока 10 мл/мин. Определение энантиомерного обогащения. Величину "ее" данного продукта определяли по реакции с (-)-альфа-(трифторметилфенил)метоксиацетилхлоридом (Гэл, J. Pharm. Sci. , 66, 169 (1977); Мошер и др., J. Org. Chem., 34, 25430 (1969)) с последующей капиллярной газовой хроматографией получаемого в результате соединения на колонке типа Chrompack из плавленой двуокиси кремния. Стандартная солевая среда. Подходящая солевая среда для микробиологических превращений, описанная в следующих примерах, имеет следующий состав:
MgSO4 - 1,00 г/л
CaCl2 - 0,021 г/л
ZnSO4

MnSO4

H3BO3 - 0,02 мг/л
CuSO4

CoCl2

NiCl2

FeSO4 - 1,50 мг/л
NaMoO4 - 2,00 мг/л
FebD ТА - 5,00 мг/л
KH2PO4 - 20,00 ммоль/л
NaOH - До pH 7
Данный состав не является критическим, но был стандартизирован для всех методик, чтобы исключить их непостоянство. Микроорганизмы. Культуры или получали из указанного источника, или выделяли, как описано, и затем независимо идентифицировали. Обогащение микроорганизмов, продуцирующих омега-аминокислотную трансаминазу. Хемостат поддерживают с помощью 0,5% (вес/объем) R,S-2-аминобутана и 10 ммоль/л 2-кетоглутарата при скорости разбавления 0,03/ч в стандартной солевой среде. Хемостат инокулируют и ингибируют приблизительно в течение одного месяца при pH 6,8 - 7,0. Штаммы, которые развиваются, выделяют и выращивают на минимальном агаре, содержащем стандартную солевую среду, дополненную 10 мМ 2-кетоглутарата и 5 мМ R,S-1-фенил-3-аминобутана. Восстановление фермента. Если не указано особо, клетки из культуры центрифугируют в течение 10 мин при 10000 g, повторно суспендируют в 10 мМ фосфатном буфере при pH 7 и 0,5 мМ пиридоксальфосфате и разрывают путем двух проходов через охлаждаемый французский пресс, работающий при давлении 15000 фунтов/дюйм2. Остатки клеток удаляют центрифугированием в течение 1 ч при 10000 g и собирают ферментсодержащую надосадочную жидкость. Следующие примеры будут служить дальнейшей иллюстрацией существа изобретения, но они не должны истолковываться как ограничение его объема, который определяется только приведенной формулой изобретения. Пример 1. Следующая методика дает пример выращивания микроорганизмов, продуцирующих омега-аминокислотную трансаминазу, при использовании в качестве единственного источника азота донора аминогруппы. Bacillus megaterium выращивали в 3-литровой вибрирующей колбе (200 об/мин) в течение 17 ч при 30oC, куда было добавлено: 1 л вышеназванного солевого раствора, 60 мМ ацетата натрия, 30 мМ фосфатного буфера, 30 мМ динатрий 2-кетоглутарата и 100 мМ н-пропиламина как источника азота. Когда культура достигла плотности 0,6 г (сухого веса) на 1 л, клетки собирали и выделяли фермент, как описано выше. Удельная активность омега-аминокислотной трансаминазы, полученной таким образом, при испытании согласно представленной выше методике составила 0,49 ед./мг. Используемый в вышеуказанной методике штамм Bacillus megaterium получали из образцов почвы без особой обработки аминами путем инокуляции ранее описанного хемостата и выделением доминантных организмов (тех, которые способны расти на R,S-1-фенил-3-аминобутане). Этот штамм независимо идентифицировали с помощью американской коллекции типов культур как Bacillus megaterium, который существенно не отличался от известного штамма АТСС 14581 и который по своему фенотипу был подобен штамму АТСС 49097В. Пример 2. Следующая методика дает пример выращивания микроорганизмов, продуцирующих омега-аминокислотную трансаминазу, с использованием донора аминогруппы в качестве единственного источника углерода. Pseudomonas aeruginosa АТСС 15692 выращивали на бета-аланине как единственном источнике углерода, как описали Уэй и др. (FEMS Micro Lett., 34, 279 (1986)), и затем получали клеточные экстракты, содержащие омега-аминокислотную трансаминазу, как здесь описано. При анализе по методике, описанной выше, удельная активность омега-аминокислотной трансаминазы составила 0,040 ед/мг. Пример 3. Pseudomonas putida АТСС 39213 выращивали, как описано в примере 1, и затем получали ферментный экстракт, как здесь указано. Удельная активность омега-аминокислотной трансаминазы составила 0,045 ед/мг. Пример 4. Следующая методика дает пример выращивания микроорганизмов с использованием аммония в качестве единственного источника азота и последующим индуцированием выделения омега-аминокислота трансаминазы путем добавления амина. Bacillus megaterium выращивали в культурах объемом 1 л в стандартной солевой среде, дополненной 40 мМ указанного источника углерода, 5 мМ хлорида аммония, 80 мМ фосфатного буфера и 2 мМ аминного индуктора, указанного ниже. Спустя 30 - 40 ч фермент собирали и анализировали, как описано выше (таблица). Пример 5. Следующая методика дает пример выращивания микроорганизмов с использованием обогащенного белком источника и последующим индуцированием выделения омега-аминокислотной трансаминазы путем добавления амина. Bacillus megaterium выращивали в 121-литровом ферментере при pH 7 и 30oC с аэрацией и при перемешивании в вышеуказанной солевой среде, дополненной касаминовыми кислотами до концентрации 10 г/л. Постепенно добавляли ацетат натрия вплоть до достижения концентрации 120 мМ, когда образуются агрегаты. В этой точке плотность клеток составляла 3 г (сухого веса) на 1 л. 1-Фенил-3-аминобутан добавляли вплоть до концентрации 10 мМ, когда образуются агрегаты. Спустя 12 ч фермент собирали и анализировали, как описано выше. Удельная активность составляла 0,49 ед./мг. Пример 6. Следующая методика дает типичный синтез хирального амина. Растворимый ферментный препарат получали из Bacillus megaterium способом, описанным в примере 1. Анализ, выполненный по описанной выше методике, показал, что удельная активность составляла 0,58 ед./мг. К 200 мл водного раствора 350 г этого препарата, 0,4 мМ пиридоксальфосфата и 40 мМ фосфата натрия добавляют 4,2 мМ 1-фенилбутан-3-она и 100 мл 2-аминобутана как донора аминогруппы. Смесь инкубировали при pH 7 и 30oC в течение 4 ч, когда концентрация R-1-фенил-3-аминобутана достигала 3,35 мМ, что соответствовало 80%-ному превращению. Продукт выделяли путем добавления 40 мл 10N раствора гидроксида натрия и экстрацией щелочного водного раствора 250 мл н-гептана. После упаривания гептановых экстрактов было получено 100,5 г продукта, который анализировали по его производному, как описано выше, и обнаружили, что он содержал 96,4% S-1-фенил-3-аминобутана. По аналогии с этим из 1-фенилпропан-2-она был получен S-1-фенил-2-аминопропан с величиной "ее" 96,4 и выходом 94,8%. Из ацетофенона был получен S-1-амино-1-фенилэтан с величиной "ее" 100 и выходом 44%.
Формула изобретения
в количестве, существенно более высоком, чем другой формы, где каждый из R1 и R2 представляет собой алкильную или группу, незамещенную или замещенную ферментативно неингибирующей группой, и R1 отличается от R2 по структуре или хиральности,
отличающийся тем, что осуществляют взаимодействие кетона формулы

в которой R1 и R2 - такие, как определено выше,
с омега-аминокислотной трансаминазой в присутствии донора аминогруппы по крайней мере до тех пор, пока не образуется существенного количества одного из названных хиральных аминов. 2. Способ по п. 1, отличающийся тем, что донором аминогруппы является 2-аминобутан, глицин, аланин или аспаргиновая кислота. 3. Способ по п. 1, отличающийся тем, что каждый R1 и R2, независимо, представляют собой неразветвленную или разветвленную алкильную группу из 1 - 6 атомов углерода, неразветвленную или разветвленную фенилалкильную группу из 7 - 12 атомов углерода, или фенильную, или нафтильную группу, причем каждая из названных групп является незамещенной или замещенной ферментативно неингибирующей группой. 4. Способ по п.3, отличающийся тем, что каждый из R1 и R2, независимо, представляет собой метил, этил, н-пропил, изопропил, н-бутил, изобутил, втор-бутил, фенил, бензил или фенэтил. 5. Способ по п. 1, отличающийся тем, что названный кетон и донор аминогруппы приводят во взаимодействие либо с целыми клетками микроорганизма, которые продуцируют омега-аминокислотную трансаминазу, либо со свободным от клеток водным препаратом омега-аминокислотной трансаминазы, либо с названной омега-аминокислотной трансаминазой, иммобилизованной на носителе. 6. Способ по п.1, отличающийся тем, что названный донор аминогруппы используют в значительном молярном избытке.
РИСУНКИ
Рисунок 1