Центробежная мельница
Изобретение может быть применено для тонкого измельчения различного минерального сырья, а также для раскрытия агрегатов алмазосодержащих руд. В центробежной мельнице узел измельчения состоит из двух конусообразных роторов 3, соосно размещенных в корпусе на горизонтальных валах 2 с зазором друг относительно друга и вращающихся в противоположные стороны. Образующая внутренней рабочей поверхности каждого ротора имеет вид логарифмической кривой, асимптота которой параллельна оси вращения роторов и размещена от нее на расстоянии, равном радиусу выходного отверстия загрузочного приспособления, при этом логарифмическая кривая описывается уравнением где ri - текущий радиус внутренней рабочей поверхности ротора, измеренный на расстоянии li по оси вращения ротора от начала его криволинейной внутренней поверхности; n и c - линейные параметры, величина которых зависит от крупности Kmax исходного материала; b = (rmax - rmin + n)/ tg
max ; rmax и rmin - заданные соответственно максимальный и минимальный радиусы рабочей поверхности ротора;
max = 65 - 75o - угол между касательной к рабочей поверхности ротора в точке, находящейся на максимальном радиусе этой поверхности, и осью вращения роторов. На концевых участках роторов могут быть выполнены радиальные кольцевые выточки. 1 з.п. ф-лы, 3 ил.
Изобретение относится к технике для дезинтеграции твердых рудных и нерудных материалов и может быть использовано для тонкого измельчения различного минерального сырья в строительной и химической промышленности, угля для экологически безвредного и экономически выгодного сжигания в котельных агрегатах тепловых электростанций, а также для раскрытия агрегатов алмазосодержащих руд.
Известна размольная установка центробежного типа, содержащая корпус с соосно установленными в нем с зазором на горизонтальных валах двумя конусообразными дисками с перегородками, образующими кольцевые размольные камеры [1]. Однако это устройство не позволяет достигнуть высокой эффективности помола вследствие низкой скорости соударяющихся зерен материала, нерациональных траекторий частиц движущихся навстречу друг другу потоков измельчаемого продукта. Недостатки обусловлены тем, что движение материала по коническим рабочим поверхностям роторов, образующие которых прямолинейны, не обеспечивает набора частицами высокой скорости. Наличие перегородок лишь усугубляет недостатки. Известна центробежная мельница в виде соосно размещенных в корпусе на горизонтальных валах двух конусообразных роторов, вращающихся в разные стороны и установленных с зазором друг относительно друга, загрузочного и разгрузочного приспособлений и привода [2]. Недостатком указанной мельницы является низкая эффективность дезинтеграции, так как частицы материала не успевают приобрести достаточную скорость вылета и соответствующую траекторию движения частиц из-за нерациональной конструкции роторов. Кроме того, прямолинейная образующая рабочей поверхности ротора не позволяет сформировать требуемый разгона частиц в зависимости от их крупности. Задачей изобретения является повышение эффективности дезинтеграции за счет увеличения скорости, а значит, и энергии соударения частиц, а также оптимизации траекторий их относительного движения. Это достигается за счет того, что в центробежной мельнице, содержащей корпус, узел измельчения в виде двух конусообразных роторов, соосно размещенных в корпусе на горизонтальных валах с зазором друг относительно друга и вращающихся в противоположные стороны, загрузочное и разгрузочное приспособления и привод, образующая внутренней рабочей поверхности каждого ротора имеет вид логарифмической кривой, асимптота которой параллельна оси вращения роторов и размещена от нее на расстоянии, равном радиусу выходного отверстия загрузочного приспособления, при этом логарифмическая кривая описывается уравнением ri= rmin{0,5 exp[(li-c)/b]+1}-n, , где ri - текущий радиус внутренней рабочей поверхности ротора, измеренный на расстоянии li по оси вращения ротора от начала его криволинейной внутренней поверхности; n и c - линейные параметры, величина которых зависит от крупности Kmax исходного материала: n = (2/3)K1,2max5; c = A/(nK0,5max); ; где A= 540-580 - эмпирический коэффициент, зависящий от физико-механических свойств измельчаемого материала b = (rmax-rmin+n)/tg
где
rmax и rnin - заданные (принимаемые конструктивно) соответственно максимальный и минимальный радиусы рабочей поверхности ротора;


ri= rmin{0,5 exp[(li-c)/b]+1}-n, ,
где
ri - текущий радиус внутренней рабочей поверхности ротора, измеренный на расстоянии li по оси вращения ротора от начала его криволинейной внутренней поверхности; n и c - линейные параметры, величина которых зависит от крупности Kmax исходного материала:
n = (2/3)K1,2max5; c = A/(nK0,5max); ;
A= 540-580 - эмпирический коэффициент, зависящий от физико-механических свойств измельчаемого материала;
b = (rmax-rmin+n)/tg

rmax и rmin - заданные (принимаемые конструктивно) соответственно максимальный и минимальный радиусы рабочей поверхности ротора;





1. Патент РФ N 2012403, кл. B 02 C 7/06, 1991. 2. Авторское свидетельство СССР N 599838, кл. B 02 C, 1976.
Формула изобретения
ri= rmin{0,5 exp[(li-c)/b]+1}-n,
где ri - текущий радиус внутренней рабочей поверхности ротора, измеренный на расстоянии li по оси вращения ротора от начала его криволинейной внутренней поверхности;
n и c - линейные параметры, величина которых зависит от крупности Kmax исходного материала
n = (2/3)K1,2max5;
c = A/(nK0,5max);
A = 540 - 580 - эмпирический коэффициент, зависящий от физико-механических свойств измельчаемого материала;
b = (rmax-rmin+n)/tg

rmax и rmin - заданные (принимаемые конструктивно) соответственно максимальный и минимальный радиусы рабочей поверхности ротора;

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3