Конъюгат на основе анти-jgm-антитела (варианты) и способ снижения секреции jgm антитела лимфоцитами (варианты)
Использование: биотехнология, иммунология. Сущность изобретения: способ снижения секреции IgM-антитела из лимфоцитов заключается в контактировании лимфоцитов с цитоцидально эффективным количеством конъюгата на основе анти-IgM-антитела. Конъюгат включает цитотоксический агент гелонин, связанный с моноклональным антителом, которое селективно взаимодействует с IgM-антителом или с клетками гибридомы, продуцирующими IgM-антитело, не взаимодействует с IgG1 и IgG2 антителом и относится к G-изотипу. 4 с. и 4 з.п. ф-лы, 4 табл., 27 ил.
Изобретение относится к области иммунологии, в частности к получению и использованию моноклональных антител. Более конкретно, оно относится к моноклональным анти-IgM-антителам, гибридомам, которые продуцируют эти антитела, иммунохимическим агентам, получаемым из этих антител, и их использованию.
Со времени доклада Кохлера и Милстейна, в котором было описано получение моноклональных антител, развитие технологии получения лимфоцитов, способных продуцировать антитела определенной заранее специфичности, было направлено на развитие как прикладных, так и фундаментальных научных исследований. Антитела являются эндогенными протеинами, продуцируемыми иммунной системой в ответ на антигенное стимулирование. Эти протеины специфически связываются с молекулами антигена в определенных участках (эпитопах). Поликлональные антитела получают при помощи иммунизации животных антигенами, такие антитела связываются с молекулой антигена в нескольких участках (эпитопах). Моноклональные же антитела представляют собой вполне определенное множество антител, которые получают из одного клона (моноклона) клеток, продуцирующих специфическое антитело. В отличие от поликлональных антител, моноклональные антитела связываются только с одним специфическим эпитопом на молекуле антигена. Хотя технология продуцирования моноклональных антител достаточно хорошо разработана, современные методы все же остаются весьма длительными по времени, трудоемкими и часто приводят к продуцированию антител, которые, хотя и являются специфическими относительно целевого антигена, обладают относительно низким сродством к нему, и, таким образом, имеют ограничения при использовании. Среди трудностей, возникающих при получении эффективных и клинически полезных моноклональных антител, важнейшая заключается в обилии антител подтипа IgM, получаемых из гибридом, продуцированных с использованием стандартных процедур иммунизации in vivo или in vitro. Антитела подтипа IgM обладают в общем случае низким сродством, трудно поддаются очистке и часто содержат множество антител, продуцируемых гибридомами. Кроме того, в смешанных культурах клеток гибридом, секретирующих IgM и IgG, клетки, секретирующие IgM, часто перерастают гибридные клетки, секретирующие IgG. Частью трудоемкой процедуры получения гибридом является удаление клеток гибридомы, продуцирующих IgM, полученных после слияния клеток. Это в общем случае делают путем клонирования клеток при помощи ограниченного разбавления, выращивания отдельных клеток в колониях и испытания каждой колонии отдельно с целью определения, какие колонии продуцируют антитела подтипа IgG. Обычно клетки гибридомы, продуцирующие IgG, затем подвергают последующему анализу с тем, чтобы определить антигенную специфичность продуцируемых антител. Есть сообщения об антителах, которые направлены против эпитопов на IgM-антителе, но все эти антитела, испытанные до настоящего времени, оказались также химически активными и с антителами подтипа IgG. Заявителем, а также другими авторами предложены различные цитотоксичные агенты, связывающиеся с антителами с образованием так называемых иммунотоксинов. В последнее время интерес исследователей был направлен в основном на иммунотоксины, в которых моноклональные антитела конъюгированы с ферментативно активными участками (A-цепями) токсинов бактериальной или растительной природы через гетеро-бифункциональные агенты ( Nevelle, D.M. и Youle, R.J., Immunol Rev (1982) т. 62, стр. 75-91, Ross, W.C.J. и др. European J. Biochem. (1980), стр. 104, Vitteta, E.S. и др. Immunol. Rev. (1982), т. 62, стр. 158-183, Raso, V. и др. Cancer. Res. (1982), т. 42, стр. 457-464, Trowbridge, I.W. и Domingo D.L., Nature (Лондон) (1981), т. 294, стр. 171-173. Настоящее изобретение относится к получению и использованию моноклональных антител крысы, которые: (a) селективно связываются с антителами подтипа IgM; (b) являются IgG; (c) не связываются с подтипами IgG1 или IgG2. (Предпочтительный вариант осуществления этих антител 2G10 и его функциональные эквиваленты). Более конкретно, настоящее изобретение относится к иммунотоксинам, получаемым при помощи конъюгации (a) описанных выше моноклональных антител и (b) цитотоксичной составляющей или магнитных шариков. В соответствии с еще одним аспектом, настоящее изобретение относится к способу подавления секреции лимфоцитами IgM-антител при помощи контактирования этих клеток с цитоцидально эффективным количеством одного или нескольких описанных выше иммунотоксинов. К дополнительным аспектам настоящего изобретения относятся прямые или косвенные иммуноанализы, направленные на определение клеток, продуцирующих IgM-антитела, или на выявление антител IgM-изотипа. Эти анализы включают инкубирование клеток с моноклональными антителами или его мечеными производными. Если используют меченые производные, присутствие меченых бинарных иммунных комплексов на клетках считывается непосредственно. Если используют немеченое антитело, клетки далее инкубируют с меченым антителом против моноклонального антитела и выявляют присутствие меченых третичных комплексов на клетках. Фиг. 1 и 2 демонстрирует тестирование надосадочных слоев гибридомы на IgM-специфическое антитело. Фиг. 3 демонстрирует специфическое связывание антитела 2G10 в зависимости от дозы. Фиг. 4 демонстрирует действие повышения содержания абсорбированного иммуноглобулина мыши при связывании 2G10. На фиг. 5 показано селективное распознавание IgM мыши прямым твердофазным иммуноферментным анализом (ELISA) с помощью 2G10. На фиг. 6 показана чистота антитела 2G10 с помощью электрофореза в полиакриламидном геле с додецилсульфатом натрия (SDS-PACE). Фиг. 7 характеризует подкласс крысиного антитела 2G10 иммунодиффузией Ouchterlony. Фиг. 8-11 демонстрируют использование 2G10 для связывания с клетками, экспрессирующими антитела подкласса IgM. Фиг. 12 иллюстрирует профиль элюирования иммунотоксина (полученного от связывания 2G10 с гелонином) на матрице для гель-фильтрации. Фиг. 13 демонстрирует чистоту иммунотоксина 2G10-гелонина с помощью SDS-PAGE. На фиг. 14 показано специфическое связывание иммунотоксина (2G10-гелонина) с IgM мыши. На фиг. 15 показано действие обработки конъюгатом на секрецию IgM первичной культурой лимфоцитов после 24 ч I. На фиг. 16 показано действие обработки конъюгатом на секрецию IgM первичной культурой лимфоцитов через 72 ч I. На фиг. 17 показано действие обработки конъюгатом на секрецию IgM первичной культурой лимфоцитов после 96 ч I. На фиг. 18 показано действие обработки конъюгатом на секрецию IgM первичной культурой лимфоцитов через 24 ч II. На фиг. 19 показано действие обработки конъюгатом на секрецию IgM первичной культурой лимфоцитов через 48 ч II. На фиг. 20 показано действие обработки конъюгатом на секрецию IgM первичной культурой лимфоцитов через 72 ч II. На фиг. 21 показано действие 2-часовой обработки конъюгатом на секрецию IgM первичной культурой лимфоцитов через 24 ч III. На фиг. 22 показано действие 2-часовой обработки на секрецию IgM первичной культурой лимфоцитов через 48 ч III. На фиг. 23 показано действие 2-часовой обработки на секрецию IgM первичной культурой лимфоцитов через 72 ч III. На фиг. 24 показано действие 2-часовой обработки на секрецию IgM первичной культурой лимфоцитов через 96 ч III. На фиг. 25 показано сравнение секреции IgM и IgG в конъюгате и обработанных слияниях AB/гел/антитело/гелонин/. На фиг. 26 показано обнаружение IgM в сыворотке мыши I, предварительно иммунизированной KLH. На фиг. 27 показано обнаружение IgM в сыворотке мыши II, предварительно иммунизированной KLH. Используемый в настоящем тексте термин "моноклональное антитело" обозначает композицию антител, представленную однородной их популяцией. Термин "функциональный эквивалент" относительно, например, крысиных моноклональных антимышиных IgM-антител, обозначает моноклональное антитело, которое: (a) кроссблокирует крысиное моноклональное антитело, (b) селективно связывается с мышиным IgM-антителом, (c) имеет q-изотип, и (d) не связывается ни с изотипом IgG1, ни с изотипом IgG2. Термин "потомство", как он здесь используется относительно гибридом, продуцирующих моноклональные антитела, являющиеся предметом настоящего изобретения, предназначен для того, чтобы "охватить" все производные и продукты родительской гибридомы. Настоящее изобретение может быть использовано для продуцирования антител, которые будут связываться с IgM-антителами любых видов. Описание настоящего изобретения раскрывает получение линии клеток гибридомы, которая стабильна и продолжает продуцировать анти-IgM-антитело, направленное на иммунизирующий вид. В предпочтительном варианте анти-IgM моноклональное антитело, являющееся предметом настоящего изобретения, направлено на мышиный или человеческий IgM. Продуцирование моноклонального антитела Партнеры для слияние, обеспечивающего получение гибридомы настоящего изобретения, получают при помощи иммунизации крыс мышиным IgM-антителом. Крысам прививали подкожным и внутрибрюшинным способом иммуногенное количество мышиного IgM-антитела в адъюванте Фрейнда, которое затем увеличивали путем введения аналогичного количества иммуногена в адъюванте. Через несколько дней после последней активации иммунизации селезенки иммунизированных крыс извлекали и из них получали суспензию клеток для использования при слиянии. Гибридомы получали из спленоцитов и клеток опухоли крысы, используя технику гибридизации соматических клеток Колера Б. и Милстейна К. (Nature (1975), т. 256, стр. 495-497) в модификации Бака и др. (In vitro, (1982), т. 18, стр. 377-381). Для гибридизации можно использовать доступные линии миеломы крысы, такие, как УВ2/0 и УЗ-Ag 1.2.3. В основном, эти приемы включают слияние клеток опухоли и спленоцитов, используя вещество, способствующее слиянию клеток, такое, как полиэтиленгликоль. После слияния клетки отделяли от среды и выращивали в селективной среде, такой, например, как НАТ-среда, чтобы удалить негибридизированные родительские клетки. Гибридомы размножали, если это необходимо, а супернатанты анализировали на анти-мышиную IgM-активность при помощи известных приемов иммуноанализа (например, при помощи радиоиммуноанализа, ферментного иммуноанализа или флуоресцентного иммуноанализа), используя иммунизирующий агент IgG1, IgG2 и IgM/мышиное IgM-антитело/ в качестве антигена. Далее характеризовали положительные клоны с тем, чтобы определить, удовлетворяют ли они критерию антител, являющихся предметом настоящего изобретения. Гибридомы, которые продуцируют такие антитела, могут выращиваться in vitro или in vivo с использованием известных приемов. Моноклональные антитела могут быть выделены из культурной среды (или жидкостей организма в зависимости от случая) при помощи известных приемов очистки иммуноглобулина, таких как осаждение сульфатом аммония, гелевый электрофорез, диализ, хроматография и ультрафильтрация, если это необходимо. Селекция/характеристика моноклонального антитела Важными характеристиками моноклональных антител являются (1) класс иммуноглобулина, (2) селективность относительно мышиного IgM-антитела и (3) применимость при идентификации и связывании с клетками гибридомы, продуцирующей мышиный IgM. Селективность и спектр данного антитела определяли при помощи его испытания с (1) IgG1, IgG2 и IgM-продуцирующими клетками гибридомы и (2) IgG1, IgG2 и IgM-антителами. При селекции предлагаемых антител первоначально скринировали приблизительно 162 растущих культур гибридомы. Девять клонов взаимодействовало с мышиным IgM-антителом, но не с IgG. Один из этих клонов выбирали для дальнейшей характеристики. Антитела, проявляющие приемлемые селективность и спектры, конъюгировали с гелонином, используя N-сукцинимидил-3-(2-пиридилтио)пропионат)СПДП) или иминотиолан (ИТ) в качестве связывающего агента. Конъюгаты испытывали против покрытых IgM и IgG пластинок (фиг. 2), чтобы определить, сохраняется ли специфичность антитела после химического спаривания с токсином. Дальнейшие подробности характеристики этого антитела будут даны в промерах, приводимых ниже. Иммунохимические агенты Иммунохимические производные моноклональных антител, являющихся предметом настоящего изобретения, которые представляют особую важность, являются иммунотоксинами/конъюгатами антитела и цитотоксичной составляющей и меченых, например, радиомеченых, меченых ферментами, магнитномеченых или меченых люминофором, производных, в которых метка представляет собой средство для идентификации и/или сортировки иммунных комплексов, включающих меченое антитело/. Цитотоксичной составляющей иммунотоксина может быть или цитотоксичный препарат, или ферментативно активный токсин бактериальной или растительной природы, или ферментативно активный фрагмент (A-цепь) такого токсина. Ферментативно активные токсины и их фрагменты являются предпочтительными, их примерами являются гелонин, A-цепь токсина дифтерии, несвязывающие активные фрагменты токсина дифтерии, A-цепь экзотоксина (из Pseudomonas aeruginosa), A-цепь рицина, A-цепь арбина, A-цепь модекцина, альфа-сарцин, протеины Aleurites fordii, диантиновые протеины, протеины Phytoiacca americana (PAPI, PAPII и PAP-S), ингибитор Momordica Charantia, курцин, кротин, ингибитор Saponaria officinalis, митоцеллин, рестриктоцин, феномицин и эномицин. Гелонин является наиболее предпочтительным. Конъюгаты моноклонального антитела и такие цитотоксичные составляющие могут быть получены с использованием самых разнообразных соединяющих агентов, предназначенных для получения бифункциональных протеинов. Примерами таких реагентов являются СПДП, ИТ, бифункциональные производные сложных имидоэфиров, такие, как диметиладипимидат-НС1, активные сложные эфиры, такие, как дисукцинимидилсуберат, альдегиды, такие, как глютаральдегид, бис-азидосоединения, такие, как бис/пара-азидопензоил/-гександиамин, бис-диазониевые производные, такие, как бис-/пара-диамоний-бензоил/-этилендиамин, диизоцианаты, такие, как толилен 2,6-диизоцианат, и бис-активные соединения фтора, такие, как 1,5-дифтор-2,4-динитробензол. При использовании с целью подавления продукции IgM-антител гибридомами in vitro, конъюгаты в общем случае добавляют в культурную среду клеток в концентрации не менее примерно 10нМ. Форма и способ применения в экспериментах in vitro не играют решающей роли. В общем случае используют водные формы, которые совместимы с культуральной или перфузионной средой. Цитотоксичность может быть "считана" при помощи известных приемов для определения присутствия или концентрации клеток гибридомы, продуцирующих IgM. При использовании in vivo с целью подавления секреции клетками IgM, иммунотоксины вводят иммунизированным животным в терапевтически эффективных количествах (т.е. количествах, которые исключают или снижают продуцирование IgM спленоцитами). Они обычно применяются парентерально или, в предпочтительном варианте, внутривенным способом. Доза и режим дозировки будут зависеть от природы продуцирующей IgM клетки, подлежащей подавлению, характеристик конкретного иммунотоксина, например, его терапевтического показателя, и активности действия. Количество применяемого иммунотоксина может изменяться в области от примерно 0,1 до примерно 10 мг/кг массы организма. При парентеральном применении иммунотоксины используют в виде единичной дозы инъектируемой формы (раствора, суспензии, эмульсии) вместе с приемлемым с фармацевтической точки зрения парентеральным носителем. Примерами таких носителей являются вода, физиологический раствор, раствор Рингера, раствор декстрозы и 5%-ный человечий сывороточный альбумин. Можно также использовать неводные носители, такие как нелетучие масла и этилолеат. В качестве носителей можно использовать липосомы. Носитель может содержать небольшие количества добавок, таких, как материалы, которые увеличивают изотоничность и химическую стабильность, например, буферы и консервирующие агенты. Иммунотоксин в общем случае включают в такие носители в концентрациях от примерно 1 мг/мл до 1 мг/мл. Цитоксичные радиофармацевтические агенты для подавления клеток, продуцирующих IgM, могут быть получены путем комбинирования изотопов (например, V, Pt), испускающих переносчики высокой линейной энергии (ПЛЭ), с антителами. Термин "цитотоксичная составляющая", как он здесь используется, включает такие изотопы. Метки, которые используются при получении меченых вариантов антител, включают составляющие, которые могут быть обнаружены непосредственно, такие, например, как люминофоры и радио-метки, а также такие, как ферменты, которые в результате реакции могут образовывать производные, которые затем могут быть обнаружены. Примерами таких меток являются 32P, 125I, 3H, 14C, флюоресцентные агенты и их производные, родамин и его производные, дансил, умбеллиферон, 2,3-дигидрофталазин-дионы, пероксидаза хрена обыкновенного, щелочная фосфатаза, лизоцим и глюкоза 6-фосфат дегидрогеназа. Антитела могут быть снабжены такими метками при помощи известных приемов. Например, можно использовать соединяющие агенты, такие как альдегиды, карбодиимиды, дималеимид, имидаты, сукцинимиды, бис-диазотированный бензидин и т.п., для того чтобы снабдить антитела указанными выше флуоресцентными, хемилюминесцентными и ферментными метками. Антитела могут быть также мечены с использованием магнитных шариков, применяемых в режиме "магнитной селекции". Антитела и меченые антитела могут быть использованы в самых разнообразных процедурах сортировки клеток, чтобы отделить гибридомные клетки, продуцирующие IgM, от гибридомных клеток, продуцирующих IgG, или чтобы удалить клетки гибридомы, продуцирующей IgM, из культур, содержащих такие клетки. Приемы, которые могут быть использованы для анализа, известны и включают прямые и непрямые методики. Прямые анализы включают инкубирование гибридомы или антител неизвестного изотипа с меченым антителом, являющимся предметом настоящего изобретения. Если образец включает продуцирующие IgM клетки, меченое антитело будет связываться с такими клетками. После промывки клеток с тем, чтобы удалить несвязанные меченые антитела, образец анализируют на присутствие меченых иммунных комплексов. При непрямых анализах образец клеток инкубируют с немеченным моноклональным антителом. Образец затем обрабатывают меченым антителом против моноклонального антитела (например, меченого антикрысиного антитела), промывают и анализируют на присутствие меченых третичных комплексов. Приводимые ниже примеры дают подробное описание получения, характеристики и использования одного из представителей моноклонального антитела по изобретению. Эти примеры не следует рассматривать в качестве ограничения настоящего изобретения в какой-либо степени. Пример 1. Источник и характеристика анти-мышиных IgM моноклональных антител крысы Гибридому крысы, обозначаемую через 58,6, получали от доктора Иоанна Триала (Joanne Trial), Факультет иммунологии Андерсоновского Онкологического Центра. Сначала линия клеток 58,6 секретировала крысиное антитело. Линия клеток не была стабильной и, спустя примерно четыре субкультуры, клетки 58,6 прекращали продуцировать какие-либо антитела. Первоначальный источник клеток затем клонировали при помощи ограничивающих разбавлений с тем, чтобы получить линию клеток, которая была бы стабильной и продолжала продуцировать анти-IgM антитела. A) Клонирование при помощи ограничивающего разбавленияКлетки 58,6 культивировали в среде Айскоува в течение 3 дней при температуре 37oC во влажной атмосфере с 5% CO2 в воздухе. Когда размножающаяся культура клеток достигала 50%-ного слияния, их собирали центрифугированием и осуществляли подсчет с использованием гемоцитометра. Клетки разбавляли 50% свежей среды и 50% обработанной среды (среды, в которой клетки 58,6 выращивали в течение 7 дней) и помещали на пластинки с 96 углублениями в расчете приблизительно одна клетка на каждое углубление пластины. Когда в углублениях, содержащих по одной клетке, вырастали небольшие колонии (приблизительно 12 дней), среду удаляли и анализировали на анти-IgM антитело, как описано в примере 2. Положительные клетки размножали до значительных объемов антител, клеточное сырье замораживали, а антитела затем подвергали анализу и характеристике. Когда линии клеток были полностью проанализированы на тип и специфичность продуцируемых антител, соответствующие линии клеток снова клонировали и размножали для последующего замораживания клеточного сырья и введения мышам Nude, обработанным пристаном, с целью получения асцитных жидкостей. B) Замораживание гибридных клеток
Когда гибридные клетки, помещенные в колбы Т75, достигали 70% слияния, клетки собирали центрифугированием, и осадок снова суспендировали в 0,9 мл фетальной сыворотке теленка. Непосредственно перед замораживанием клетки переносили в виалы для замораживания и в каждую виалу добавляли 0,1 мл диметилсульфооксида (ДМСО). Виалы хранили в жидком азоте. C) Получение асцитных жидкостей
Приблизительно 107 клеток гибридомы промывали в среде, не содержащей сыворотки, и инъецировали внутрибрюшинным способом мыши Nude, которая предварительно получала внутрибрюшинным способом 0,5 мл пристана за 7-14 дней до этого. Асцитные жидкости в основном образовывались в течение 1-3 недель, и их собирали из брюшной полости, используя большую калибровочную иглу. Жидкость собирали в пробирки, содержащие 5 мл ПБС (физраствор, забуференный фосфатом) с 20 мМ ЭДТА (этилендиаминтетрауксусная кислота). После центрифугирования со скоростью 2000

Колонии гибридомы, которые выращивали до плотности приблизительно 500-1000 клеток в течение 2 недель, отбирали для последующего анализа с тем, чтобы определить, какие из клеток гибридомы продуцировали антитела, которые связывают мышиные IgM-антитела. Культуральную среду этих колоний анализировали на присутствие анти-мышиного IgM крысы при помощи иммуноферментного анализа, осуществляемого в соответствии с процедурой Боллера и др. 100 мг 1 мг/мл очищенного мышиного IgM или IgG (фирма Сигма Кемикал Компани, Сент-Луис, Mo) разбавляли в покрывающем буфере (50 мМ NaHCO3, pH 9,8) и абсорбировали в течение ночи на микротитровальных пластинах с 96 углублениями путем инкубирования при температуре 4oC во влажной камере. Затем углубления промывали три раза забуференным фосфатом физраствором, содержащим 0,2% Твина-20 (ПБС-Твин). После промывки и удаления всех следов жидкости в углублениях промоканием 100






Мышиным иммуноглобулином различных подтипов (IgM-каппа и ламбда, IgG1, IgG2 и IgG3) покрывали микротитровальные пластинки, как в примере 2, а затем более подробно изучали связывание анти-мышиных IgM-антител крысы, продуцированных клетками гибридомы, которые были положительны в примере 2. Все пластинки "считывали" в области с длиной волны 405 нм. Поглощение (в сравнении с контролем) рассматривали как указание на присутствие антитела против мышиного IgM. Пример 4. Очистка и характеризация моноклонального антитела крысы 2G10
Как было показано в примере 3, антитело 2G10 давало положительную реакцию с IgM-каппа и ламбда. Это антитело подвергали очистке при помощи центрифугирования и фракционирования с использованием сульфата аммония. Линию клеток гибридомы, обозначенной через 2G10, сдали на хранение в Американское Собрание Типов Культур (АТСС), Роквилл, Мд, США 23 апреля 1990 г., где она имеет шифр хранения N HB 10436. Эти культуры доступны в соответствии с патентным законодательством и регулированием в этой области в Соединенных Штатах Америки и тех иностранных государствах, в которых поданы аналоги настоящей патентной заявки. Доступность сданной на хранение культуры не включает в себя разрешение на осуществление изобретения, являющегося предметом настоящей патентной заявки, а также патента, выданного по настоящей патентной заявке или любой раздельной заявке, или ее продолжение. Супернатант культуры 2G10 (или асцитную жидкость, полученную от мышей Nude) доводили до 45%-ного насыщения сульфатом аммония (высаливание) при помощи медленного добавления равного объема раствора сульфата аммония с 90%-ным насыщением. Образец перемешивали в течение 30 мин при температуре 4oC, а затем центрифугировали со скоростью 20000 x g в течение 30 мин. Осадок снова суспендировали в растворе сульфата аммония с 40%-ным насыщением, перемешивали 30 мин и снова получали осадок центрифугированием, как это описано выше. Этот осадок повторно суспендировали в воде и подвергали диализу против 100 объемов ПБС. Порции раствора использовали для определения содержания протеина (по оптической плотности при 280 нм), чистоты (при помощи SDC-PAGE) и специфичности связывания (при помощи ELISA). Оставшийся раствор антитела замораживали при -20oC и хранили до употребления. IgM-антитела подвергали очистке при помощи осаждения сульфатом аммония и гель-фильтрации на колонке размером 2,6x40 см, заполненной агарозой, декстраном и/или акриламидом, элюируя смесью ПБС/ 0,01% раствор азида натрия при комнатной температуре с объемной скоростью потока 1 мл/мин. Подкласс моноклонального антитела крысы 2G10 определяли при помощи процедуры Оухтерлони (Ouchterlony и Nilsson (1958) в книге Handbook of Exp. Immun. , ред. Weir, изд. Blackwell Scientific, London, p. 19.1-19.44), используя комплект реактивов для иммунодиффузии, производимый фирмой ICN Immunobiologicals (Lisle, IL). Подкласс антитела 2G10 очень важен при определении способа очистки. Чтобы осуществить анализ подкласса, использовали набор реактивов для иммунодиффузии по Оухтерлони. При этом антисыворотки против различных подтипов иммуноглобулина крысы помещали в соответствующие углубления. В центральное углубление добавляли известный стандарт или неизвестный образец и им давали возможность диффундировать в полутвердую среду. Полоса осаждения в сайте специфической антисыворотки указывает на подтип. Как показано на фиг. 7, положительные контрольные образцы, содержащие все антитела подтипов крысы, демонстрируют линии реакции во всех углублениях (для всех подтипов). С другой стороны, антитело 2G10 взаимодействовало только с антисывороткой подтипа IgG2A, что означает, что антитело 2G10 крысы является антителом IgG2a. Для того чтобы оценить связывание производимого промышленностью антитела крысы с мышиным IgM, оценивали активность в ELISA-тесте моноклонального антитела крысы L-O-MM-9 (фирма Serotec, cat # MCA 199) против мышиного IgM. Сто нанограмм mu-каппа, гамма-каппа или гамма-ламбда помещали в каждое из углублений пластины с 96 углублениями. Затем добавляли различные количества антитела крысы LO-MM-9 и осуществляли ELISA-анализ на антитело крысы, как это было описано ранее. Как показано в табл. 1, какого-либо связывания этого антитела крысы с мышиным IgM-покрытием углублений отмечено не было. Таким образом, это антитело не представляется полезным для дальнейшего изучения. Кроме того, как показано на фиг. 8-11 (полоса 3), разделение этого антитела в SDS-PAGE давало по крайней мере три основные протеиновые полосы и по крайней мере пять слабых протеиновых полос. Пример 5. Связывание антимышиного IgM крысы с клетками, продуцирующими IgM
Для того чтобы подтвердить, что антимышиное IgM-антитело крысы 2G10 связывается не только с пластиной с 96 углублениями, покрытыми очищенным IgM-антителом, но также и с клетками, продуцирующими IgM-антитела, осуществляли FACS-анализ на клетках 10C1 и клетках гибридомы 238-57ADR мыши, которые секретируют IgG и IgM, соответственно. Для этого 1





Предлагаемые антитела подвергали конъюгации с A-цепью токсина рицина (RTA), обработанной СПДП, как это описано Карлссоном Я. и др. Biochem. Journ. (1978), т.173, стр. 723-727, или иминотиоланом (ИТ). Пример 6. Соединение 2G10 с гелонином
Получали сырьевой раствор СПДП-реагента (N-сукцинидил-3-(2-пиридилдитио)проприоната)) 6 мг/мл) в сухом ДМФ. В 1 мл раствора ПБС, содержащего 1 мг антитела 2G10, в стеклянной пробирке размером 12х75 мм, медленно добавляли СПДП до 5-кратного молярного избытка (приблизительно 10

Чтобы удалить продукты с низкой молекулярной массой и неконъюгированный гелонин, реакционную смесь наносили на колонку с Сефадекс G-300 (1,6 x 31 см), предварительно сбалансированную при помощи ПБС. Фракции (1,0 мл) собирали и порции по 50

A. In vitro иммунизация и продуцирование моноклонального антитела
Описания, используемые в настоящее время при получении мышиных моноклональных антител, предусматривают формирование гибридом, которые секретируют антитела подкласса IgM. Для того чтобы подтвердить наиболее общий результат, получаемый в соответствии с этими описаниями, использовали два приема для формирования моноклональных антител против декарбоксилазы орнитина (ОДС) крысы. Первый прием включает иммунизацию клеток селезенки мыши in vitro, т. е. в чашках для культур, ОДС-протеином. Эту процедуру осуществляли в соответствии с описанием Лубена и др. (Luben и Mohler (1980), Molec. Immunol, т. 17, стр. 635-639), используя 25 мг очищенного ОДС печени крысы. ОДС-протеин инкубировали с мышиными клетками в течение 72 ч при температуре 37oC в присутствии тимоцит-кондиционированной среды (источник специальных факторов роста для клеток, секретирующих иммуноглобулин). Клетки селезенки затем сливали с клетками МРС-миеломы, используя полиэтиленгликоль в качестве агента, стимулирующего слияние. Полученные в результате гибридные клетки испытывали на секретирование антитела, химически активного относительно ОДС-протеина. Полученные результаты приведены в табл. 3. После первоначального скрининга ОДС-протеином гибридомы снова клонировали и снова испытывали. Получали семьдесят гибридом, которые взаимодействовали с ОДС-протеином в соответствии с несколькими критериями. Однако, как показывает табл. 3, все клоны секретировали антитела изотипа IgM. Ни один из них не секретировал IgG-антитела. Как было установлено, эти антитела имеют ограниченное использование в самых различных приложениях моноклональных антител. B. In vivo иммунизация и продуцирование моноклональных антител. Второй прием, используемый для получения моноклональных антител, состоял в иммунизации мышей при помощи введения путем инъекции очищенного ОДС-протеина. Клетки мышиной селезенки изолировали после иммунизации, сливали с клетками миеломы P3






Для демонстрации цитотоксичности конъюгата гелонина 2G10 использовались две самки мыши Balb (c) (Harlan Sprague Dawley), у которых были иссечены селезенки. В ламинарном проточном боксе кожа над селезенкой промывалась 70%-ным изопропиловым спиртом и вскрывалась асептическими или простерилизованными ножницами. С использованием пары стерильных пинцетов и ножниц вскрывалась брюшина и обнажалась селезенка. Селезенка помещалась в 100-миллилитровую стерильную чашку Петри с 10-15 мл питательной среды (Iscoves; Gibco) с 10%-ной фетальной телячьей сывороткой (Hyclone) и 50 г/мл гентамицина (Tri-Bio Laboratories). Селезенка промывалась в среде и затем переносилась в чистую чашку Петри со свежей питательной средой и закрывалась. Подготовка лимфоцитов
В ламинарном проточном боксе с использованием стерильных инструментов от селезенок отсекались избыточные жировые и соединительные ткани (белый материал). Пинцетами селезенки переносили в новую чашку Петри с 20 мл питательной среды. Процедура промывания повторялась дважды. Селезенки диспергировали с использованием двух 10-миллилитровых шприцев с калиброванными иглами до тех пор, пока не осталось больших фрагментов ткани. Клетки селезенки (спленоциты) имели вид непрозрачных смесей в питательной среде и содержали как красные, так и белые клетки. Клетки и среда вносились пипеткой в 50-миллилитровую центрифужную пробирку (Corning), и оставшиеся крупные недиспергированные кусочки ткани осаждались. Клетки помещались на лед в закрытой пробирке на 10 мин. Верхняя порция отбиралась пипеткой (оставляя более крупные секции недиспергированной ткани), и центрифугировалась в течение 10 мин со скоростью 1800 оборотов в минуту (об/мин) в центрифуге с верхней платформой Dupon Sorvall 2LC-2B; надосадочная жидкость сливалась. Осадок повторно суспендировали в 10 мл питательной среды и клетки просчитывали с использованием 5



























Процедура была той же самой, что и в примере 10, за исключением того, что окончательные концентрации белка были 5



Клетки подготавливали, как в примерах 10 и 11, за исключением того, что они были открыты для обработки (контролем, антителом, гелонином, Ab + гелонином и конъюгатом) путем инкубации 2 ч на льду. Затем клетки центрифугировали и промывали дважды средой, переносили на 6-луночные планшеты и инкубировали. Образцы надосадочного слоя собирались через интервалы в 24, 48, 72 и 96 ч. Окончательная концентрация белка была 5

Питательной средой для клеток миеломы P3 x AG63 x 8 была среда Искова (Gibco) с 500 мл, содержащими 10%-ную фетальную телячью сыворотку (Hyclone) и 0,5% мл гентамицина (Trio-Bio Laboratories). Раствор 8-азо-гуанина (20















Когда надосадочные слои клеток слияния пожелтели, определяли секрецию IgM и IgG с использованием анализа ELISA. При этом жестких 96-луночных микротитровальных планшетов (Falcon) покрывали (500 нг/лунку) козьим антимышиным IgG-антителом, используя многоканальную пипетку, и высушивали в течение ночи в открытом виде при 37oC. Раствор блокировался 5% BSA в PBS (добавлением 100


Группы обработаны следующим образом. Группа 1: контрольные мыши - PBS; группа 2: антителом 2G10 и гелонином; и группа 3: конъюгатом. Конъюгат вводился внутрибрюшинно в концентрации 500







Самки мышей Balb/c обрабатывались и иммунизировались по следующей схеме. В день 0 из хвостовой вены каждой мыши отбирали 150





























Самки мышей Balb/c обрабатывались и иммунизировались по следующей схеме. В день 0 от каждой мыши забирали и оставляли кровь на анализ. В 1-й день мыши делились на 4 группы: группа 1 представляла собой группу контрольных мышей, которые получили 500











Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18, Рисунок 19, Рисунок 20, Рисунок 21, Рисунок 22, Рисунок 23, Рисунок 24, Рисунок 25, Рисунок 26, Рисунок 27, Рисунок 28, Рисунок 29