Способ фракционирования жировой композиции и способ снижения в ней содержания бактерий
Назначение: изобретение относится к масло-жировой промышленности и касается фракционирования жировой композиции. Сущность: фракционирование композиции, содержащей смесь жировых глицеридов, на две и более фракций, предусматривает нагревание до температуры, при которой все жирные глицериды находятся в жидком состоянии, охлаждение сжиженной жировой композиции до заранее определенной температуры, при которой часть жирных глицеридов находится в виде твердых частиц, и фильтрацию полученной суспензии, причем согласно изобретению, охлаждение ведут со скоростью не менее 0,5oC в минуту до получения суспензии с кристаллами, размер частиц которых составляет от 0,1 до 50 мк, и подвергают эту суспензию динамической микрофильтрации с получением первого фильтрата, не содержащего кристаллов, и первого концентрата, имеющего высокое содержание кристаллов. Первый концентрат затем также может быть фракционирован с получением второго фильтрата и второго концентрата, и процедура может быть повторена со вторым концентратом. Изобретение также предлагает способ снижения содержания бактерий в жировой композиции, предусматривающий нагревание жировой композиции до температуры, при которой все жирные глицериды находятся в жидком состоянии, и фильтрование сжиженной жировой композиции с использованием динамической микрофильтрации, чтобы получить первый фильтрат, содержащий низкую концентрацию микроорганизмов, и первый концентрат, содержащий более высокую концентрацию микроорганизмов. 2 с. и 16 з.п.ф-лы, 9 табл., 3 ил.
Изобретение касается способа фракционирования жировой композиции, содержащей смесь жирных глицеридов, на две и более фракций, предусматривающий нагревание до температуры, при которой все жирные глицериды находятся в жидком состоянии, охлаждение сжиженной жировой композиции до заранее определенной температуры, при которой часть жирных глицеридов находится в виде твердых частиц, и фильтрацию полученной суспензии.
Способ указанного во введении типа, известен, в частности, из авт.св. СССР N 461109, кл. C 11 B 7/00, 1975. Подобные технологии, однако, не решают имеющихся в данной области проблем, которые поясняются ниже. Натуральные жиры, такие, как сливочное масло, являются сложной смесью компонентов и содержат в качестве основных составляющих триглицериды, каждый из которых является сложным эфиром, содержащим до трех составляющих жирных кислот и глицерин. Природа отдельных составляющих жирных кислот различна и зависит от источника. Даже из данного источника глицериды могут существенно варьироваться со дня на день и от сезона к сезону. Такая изменчивость создает определенные проблемы, связанные с тем, что небольшие изменения в составляющих жирового ингредиента могут оказывать существенное влияние на качество и свойства конечного продукта. Ввиду этого, производители жиросодержащих пищевых продуктов вынуждены постоянно регулировать состав и параметры процесса, чтобы учесть такие изменения в источниках натуральных жиров. Сливочное масло, в общем случае, ввиду того, что оно является в высшей степени изменчивой и сложной смесью глицеридов жирных кислот, обладает непостоянными свойствами и характеристиками, такими как температура точки плавления, которая в общем случае лежит в широком диапазоне температур. Свойства и характеристики меняются также в зависимости от сезона и климата. Ввиду такой изменчивости было бы предпочтительно иметь средства для обеспечения некоторой степени постоянства состава различных жировых продуктов, чтобы избежать необходимости постоянно следить и регулировать условия обработки. В хлебобулочной и пищевой промышленности особенно важно иметь доступные компоненты жиров, которые обладают узко определенными свойствами, такими, как четко определенной узкой областью температур плавления. Кроме того, хорошо известно, что многие, если не все, натуральные жиры, которые находят применение при производстве пищевых продуктов, содержат существенные количества насыщенных жиров. Сливочное масло является первым примером. Для многих пищевых применений было бы желательно снизить количество насыщенного жира в конечном продукте, например, при помощи снижения количества насыщенного жира в исходной жировой составляющей, такой, как сливочное масло. Таким образом, был бы желателен общий способ, который позволял бы снизить количество насыщенного жира, по сравнению с таким необработанным натуральным продуктом, как сливочное масло. Хотя для обработки таких натуральных жировых материалов, как сливочное масло, используют различные приемы и способы, чтобы получить жировые фракции с определенными свойствами, большинство таких способов не только изменяют компоненты этого материала; они также оказывают неблагоприятное действие на качество продукта, в частности, на его вкус, аромат или структуру. Если, например, рассматривать сливочное масло, то любой обработанный продукт, чтобы удовлетворить потребителя, должен сохранять вкус и структуру сливочного масла. Желательно также, чтобы после извлечения из холодильника его можно было намазывать. Ввиду того, что насыщенные жиры, в общем случае, имеют более высокие температуры плавления, чем ненасыщенные жиры, то при помощи селективного удаления, по меньшей мере, части таких, плавящихся при более высоких температурах жиров можно получить жировую фракцию, которая содержит меньше насыщенных жиров и хорошо намазывается, так как ненасыщенная фракция имеет более высокое содержание компонент с низкой температурой плавления, что улучшает намазывание. Предпринимались попытки использовать несколько промышленных способов фракционирования композиции натуральных жиров, чтобы обеспечить определенный набор свойств для использования в кондитерской и хлебобулочной промышленности. Такие способы использовали молекулярную перегонку, суперкритическое экстрагирование и кристаллизацию в расплаве. В общем случае, эти способы приводили к образованию "тяжелой" фракции, содержащей жиры, плавящиеся при высокой температуре, и легкой фракции, содержащей материалы с низкой температурой плавления. Если исходным материалом является сливочное масло, "тяжелая" фракция используется при выпечке хлеба и для приготовления песочного теста. Легкую фракцию можно использовать в качестве масла на продажу. Способ, основанный на кристаллизации в расплаве, нашел самое широкое применение, главным образом благодаря законодательным причинам и экономическим соображениям. Именно таким является упомянутый во введении способ по авт.св. СССР N 461109. В соответствии с этим способом масло нагревают примерно до 60oC, чтобы его расплавить. Затем масло охлаждают с очень низкой скоростью охлаждения, приблизительно 3oC в час, что приводит к формированию больших кристаллов жира, размером приблизительно 300 мкм. Можно ожидать широкого распределения по размеру частиц 1 - 600 мкм. Эти кристаллы содержат компоненты с высокой температурой плавления, а жидкость состоит главным образом из компонент с низкой температурой плавления. Жидкая фаза содержит главным образом ненасыщенную часть компонент. Чтобы отфильтровать кристаллы, используют вакуум-фильтр, который, к сожалению, оставляет в остатке значительное количество жидкости вместе с кристаллами. Цикл кристаллизации составляет приблизительно 20 ч, чтобы получить только одну фракцию из исходного жирового сырья - сливочного масла, а полное время, необходимое для осуществления двух циклов кристаллизации, может превысить 60 ч. Масло, которое подвергают такой обработке, испытывает также существенные потери вкусовых качеств. В таких способах традиционно имеются три стадии. В соответствии с первой стадией, масло нагревают и выдерживают при температуре 60oC, чтобы снять какую-либо предыдущую термическую историю. Далее, образование ядер и рост кристаллов инициируют при помощи весьма жестко контролируемых температурных условий. Эта вторая стадия весьма продолжительна по времени, а необходимое оборудование весьма дорогостояще. Эта стадия протекает в течение от 10 до 18 ч на одну стадию фракционирования. Полученные в результате кристаллы в общем случае имеют размеры примерно 300 мкм. Такие большие кристаллы образуются вследствие медленного роста, которое вызывается в высшей степени медленным охлаждением, в общем случае примерно 0,01oC/мин. Быстрое охлаждение не подходит для этого способа, так как быстрое охлаждение привело бы к образованию маленьких кристаллов, которые трудно поддаются фильтрации, а также к образованию жидкостей с очень высокой вязкостью, что также затрудняет фильтрацию и обработку. Подвергая сливочное масло длительной термической обработке, можно также лишить масло вкуса из-за выпаривания придающих вкус соединений с меньшей молекулярной массой. Кроме того, такая обработка требует стадии пастеризации, на которой масло относительно освобождается от бактерий и других организмов. К сожалению, температуры, необходимые для пастеризации, неблагоприятно воздействуют на вкусовые качества масла. Кроме того, даже при использовании высоких температур пастеризация не исключает все нежелательные бактерии. Таким образом, ощущается необходимость также в средстве, которое позволило бы снизить количество бактерий в масле, не прибегая к пастеризации. В соответствии с настоящим изобретением предлагается, в первую очередь, быстрый способ фракционирования жировой композиции, содержащей смесь жирных глицеридов, на две и более фракций. Кроме того, в соответствии с предлагаемым способом, в первую очередь, обеспечивается процедура фракционирования жировой композиции без ухудшения вкуса компонентов исходной жировой композиции. Предлагаемый способ является действительно неожиданным ввиду того факта, что все известные способы фракционирования жировых композиций при помощи инициирования образования кристаллов жирных глицеридов основывались на в высшей степени медленном охлаждении, чтобы получить фильтруемые кристаллы жира. Как уже обсуждалось выше, такое медленное охлаждение в общем случае протекает многие-многие часы. Теперь, однако, установлено, что имеется возможность быстро охлаждать жировые композиции такие, как сливочное масло, и быстро получать фильтруемые кристаллы жирных глицеридов. Посредством выбора скорости охлаждения и температуры, до которой охлаждают ожиженную жировую композицию, можно регулировать природу жирных глицеридов, у которых инициируется кристаллообразование, и, соответственно, контролировать природу как полученного в результате фильтрата, так и концентрата после фильтрации. Предлагаемый способ позволяет также очень быстро осуществить фракционирование жировой композиции. Полное время, необходимое для охлаждения жировой композиции, инициирования образования кристаллов, чтобы получить суспензию жировых кристаллов, и удаления жировых кристаллов фильтрацией, может составлять менее часа. Согласно изобретению, способ предусматривает нагревание жировой композиции до температуры, при которой все жирные глицериды находятся в жидком состоянии, охлаждение сжиженной жировой композиции до заранее определенной температуры, при которой часть жирных глицеридов находится в виде твердых частиц, причем охлаждение осуществляют со скоростью охлаждения не менее 0,5oC в минуту, чтобы образовать суспензию кристаллов вышеупомянутой части жирных глицеридов, размер частиц которых составляет от 0,1 до примерно 50,0 мкм, и затем полученную суспендию фильтруют с использованием динамической микрофильтрации, чтобы образовать первый фильтрат, который по существу свободен от вышеупомянутых кристаллов, и первый концентрат, содержащий увеличенную концентрацию вышеупомянутых кристаллов. Установлено, что фильтрат, который является той частью сливочного масла, которая проходит через фильтр, содержит более высокий процент холестерина, чем концентрат, т.е. та часть, которая не проходит через фильтр. Таким образом, с использованием такой фильтрации можно снизить содержание холестерина в одной из фракций масла. Повторение этой процедуры с использованием концентрата, полученного на первом цикле фильтрации, в качестве сырья для второго цикла можно использовать для дальнейшего снижения содержания холестерина. В одном из вариантов выполнения изобретения, вязкость потока сжиженной жировой композиции перед фильтрацией снижают при помощи добавления в нее воды, и поддерживают жировые кристаллы и жировые капли в состоянии разбавления. Количество добавляемой воды в общем случае составляет не более примерно 10%, в предпочтительном варианте от примерно 2 до примерно 10%, а в наиболее предпочтительном варианте около 5 мас.%, в пересчете на общую массу сырья, когда сжиженной жировой композицией является сливочное масло. Количество воды может варьироваться для других жировых композиций. Если фильтр сначала насытить гидрофобным материалом таким, как жир, а затем использовать его в соответствии с изобретением, то обеспечивается быстрое фильтрование водной смеси жировых кристаллов и жировых капель без проникновения воды в фильтрат, вся вода сохраняется в концентрате. Такое селективное удаление воды из фильтра возможно до тех пор, пока давление на фильтр не превысит критического давления и "прорыва", при котором жир будет вытеснен из фильтрующего элемента, и тогда вода будет проходить через него. Важное преимущество изобретения заключается в том, что полученные жировые фракции поддерживают естественные свойства большинства, если не всех, исходных ароматических и вкусовых компонентов, так как сливочное масло подвергается лишь кратковременному нагреванию. Предлагаемый способ позволяет получать фракции сливочного масла, имеющие химические и физические характеристики, сравнимые с теми, что получают известными способами. Предлагаемый способ при этом обеспечивает значительную экономию времени обработки. Таким образом, в соответствии с изобретением предлагается, во-первых, способ быстрого фракционирования жировой композиции, который позволяет сохранить необходимые ароматические и вкусовые компоненты исходной композиции. Кроме того, изобретение предлагает способ снижения содержания бактерий в жировой композиции посредством фильтрования сжиженной жировой композиции динамической микрофильтрацией через микропористый фильтр, чтобы получить фильтрат, который имеет более низкое содержание бактерий, чем исходная сырая жировая композиция, и концентрат, имеющий более высокое содержание бактерий, чем исходная жировая композиция. При этом достигается более эффективное снижение содержания бактерий, чем при использовании других известных приемов. На фиг. 1 представлен график, полученный при помощи дифференциального сканирующего калориметра, для стеариновой фракции сливочного масла, полученной по изобретению; на фиг.2 - график, полученный при помощи дифференциального сканирующего калориметра, для олеиновой фракции сливочного масла, полученной по изобретению; на фиг.3 - график, показывающий процентное содержание твердых жировых компонент ("SFC"), которые присутствуют при указанных температурных условиях, для исходной композиции, для стеариновой фракции по фиг. 1 и для олеиновой фракции по фиг.2, определенное при помощи импульсного ЯМР. При создании конкретных условий для любой заданной процедуры фракционирования жира необходимо учитывать несколько факторов. Например, начальная температура, до которой нагревают жир, и время выдерживания жира при этой температуре могут варьироваться в зависимости от состава конкретного жира. Например, некоторые жировые композиции будут содержать более насыщенный жир, чем другие, что потребует выдерживания жира при заранее определенной температуре в течение более длительного промежутка времени, чем в случаях с меньшим содержанием насыщенного жира. Кроме того, в зависимости от природы жира будет также варьироваться и длина цепей жира, жиры с более высокой молекулярной массой, в общем случае, будут иметь более высокую температуру точки плавления, чем жиры с более низкой молекулярной массой. В соответствии с изобретением установлено, что натуральные жиры, такие как сливочное масло, при охлаждении почти мгновенно формируют жировые кристаллы, поддающиеся фильтрации. При быстром охлаждении до температуры фильтрования при соответствующих условиях можно получить кристаллы микронного размера, которые могут быть удалены с использованием соответствующих приемов фильтрации. Предварительная обработка Перед осуществлением изобретения, жировую композицию в общем случае подвергают известной предварительной обработке такой, как очистка фильтрованием. Если натуральным продуктом, подлежащим обработке, является сливочное масло, то его в общем случае нагревают до температуры около 60oC до полного расплавления и выравнивания температуры по всей массе, а вода может быть удалена при помощи отстаивания, сушки или центрифугирования. Если для фильтрования используют мембрану, которая насыщена гидрофобным материалом, как это было описано ранее, то нет необходимости в применении отдельной стадии удаления воды. Расплавленный жир далее фильтруют через фильтр с высокой емкостью для загрязнений, такой, например, который производится фирмой Полл Корпорэйшн под торговыми названиями Профиль




В качестве реактора использовали сосуд, снабженный рубашкой, соответствующего размера. Затем масло нагревали до 60oC при помощи циркуляции горячей воды и выдерживали при этой температуре в течение примерно 10 мин. Затем горячую воду в рубашке вытесняли холодной водой, чтобы снизить температуру масла соответствующим образом, в общем случае, со скоростью примерно 0,5 - 5oC/мин. Когда температура масла жира достигала примерно 90% температуры обработки, хладагент вытесняли жидкостью с температурой на несколько градусов ниже температуры обработки и выдерживали в течение соответствующего времени, предпочтительно примерно 30 мин. Масло медленно перемешивали с использованием мешалки якорного типа. Метод В2
Масло, обработанное методом А, быстро охлаждали до -5oC и выдерживали в течение 15 мин. Затем масло медленно нагревали до температуры обработки, используя подходящий агент для переноса тепла. Метод В3
Масло из метода А переносили в сосуд, снабженный рубашкой, и подвергали медленному охлаждению. Обычно масло медленно охлаждали (0,01 - 0,2oC/мин). Эту обработку осуществляли до образования больших кристаллов. Для этого подавали жидкость для теплопереноса в рубашку реактора. Температурой горячей воды управляли с использованием датчиков температуры проходного и погружаемого типа. Метод С
Работа цилиндрического динамического микрофильтра. Перед началом работы оборудование очищали горячим каустиком, а затем промывали деинизированной водой и сушили воздухом. Затем в цилиндрический динамический микрофильтр (ДМФ) устанавливали мембранный фильтрующий элемент, описанный в предыдущем разделе. Жидкость, подлежащую фильтрации, подавали из емкости в цилиндрический ДМФ поршневым насосом. Количество концентрата контролировали при помощи второго насоса или предохранительного клапана, установленного на патрубке отбора концентрата. Температуры и скорости потоков сырья, фильтрата и концентрата, а также давление сырья замеряли в различные моменты времени в течение эксперимента, в общем случае, с интервалом в 10 мин. Стандартными условиями работы цилиндрического ДМФ были: скорость вращения 600 об/мин и давление сырья примерно 2,0 - 8,0 бар. Все примеры с этим устройством осуществляли с использованием постоянных скоростей потока сырья. Качество и скорость потока каждой фракции зависит от ряда факторов. Все они резюмированы ниже. Характеристики сырья
Ф(Т) - % содержания твердых частиц в сырье при температуре. Если сырьевым потоком является обычное сливочное масло. Ф(Т) определена и обозначена как Ф'(Т). W - концентрация воды, об.%. Процесс кристаллизации
Cr - скорость охлаждения во время кристаллизации, oC/мин.

Tf - температура фильтрации, oC. Жидкость, подлежащую фильтрации, поддерживали при этой температуре в течение процесса фильтрации. Так как некоторое количество тепла выделяется во время фильтрации, Tf в общем случае на несколько градусов выше, чем Th, и является равновесной температурой, достигаемой в средстве для фильтрации в течение заданного времени пребывания. Этот параметр испытывает влияние по большей части Va и Vr. Pf - давление фильтрации, бар. Va - аксиальная скорость, м/мин. Vr - тангенциальная скорость м/мин, которая определяется исключительно скоростью вращения мембранного фильтрующего элемента. Когда Vr увеличивается, то обычно увеличивается фильтрат. Повышение этой компоненты скорости приводит к образованию большего тепла.


Показатель йода
Показатель йода, который служит мерой ненасыщения в образце жира, измеряли в соответствии с процедурой Cd 1-25 (American Oil Chemists Society). Дифференциальный сканирующий калориметр (DSC)
20-30 мг образца жира помещали в алюминиевый тигль. Ячейку для измерения продували гелием (50 мл/мин). Жир затем нагревали до 80oC и выдерживали 10 мин, чтобы обеспечить равномерный нагрев. Образец затем охлаждали до -40oC со скоростью 10oC/мин. Плавление кристаллов анализировали при нагревании образца от -40oC до 80oC со скоростью 10oC/мин. Полученные данные являются интегрированным значением энергии, выраженным в джоулях/грамм образца при 6oC (представляющей жидкую фракцию) и при 24oC (представляющей твердую фракцию). Содержание твердого жира при помощи импульсного ЯМР
Содержание твердого жира в образце при конкретной температуре измеряли при помощи пЯМР (pNMR), используя мини-спектрометр Брукера. Используемый прием соответствовал между Cd 16-81 (American Oil Chemists Society). Данные, получаемые здесь, соответствуют содержанию твердого жира (SFC) в образце при температуре 25oC. Примеры
Сливочное масло нагревали до температуры примерно 60oC, выдерживали до полного его расплавления и равномерного нагревания, а воду удаляли отстаиванием. Затем расплавленный жир фильтровали через фильтр с высокой емкостью по грязи, чтобы удалить любые внешние твердые частицы или грязь при помощи использования фильтра с порами в 10 мкм. Предварительно профильтрованный расплавленный жир затем переносили в реактор емкостью 10 л, снабженный рубашкой, где его выдерживали 15 мин. Жир быстро охлаждали до примерно 35oC с использованием холодной воды в рубашке реактора, со скоростью охлаждения от примерно 3 до примерно 5oC/мин, при этом поддерживая медленное перемешивание. Далее жир охлаждали до 28 - 30oC регулируемым образом. Жир выдерживали при этой температуре в течение примерно 30 - 40 мин. Жир непрерывно направляли циркуляционным насосом в средство динамической микрофильтрации. Давление циркуляции составляло примерно 3,6 бара. При скорости потока сырья 200 мл/мин средняя скорость потока фильтрата составляла примерно 140 мл/мин, а средняя скорость потока концентрата составляла примерно 60 мл/мин. Динамический микрофильтр, снабженный стальной мембраной, имеющей размер пор в области 0,2, функционировал при скорости ротора 150 об/мин. Жидкую фракцию после прохождения через фильтр рециркулировали обратно в резервуар. Твердый материал, который удерживался на фильтре на стороне концентрата, направляли насосом во второй резервуар. Поток фильтрата достигает равновесия на уровне 3,0 фунтов/мин/м2 (1,36 кг/мин/м2). Концентрат содержит гораздо большее число триглицеридов с более высокой температурой плавления, главным образом стеарин, по сравнению с фильтратом, который является в основном олеином, как это представлено на фиг.1 и 2, которые являются графиками, полученными с использованием дифференциального сканирующего калориметра для стеарина и олеиновой фракции, соответственно. Фиг.3 представляет результаты по содержанию твердого жира (SFC), полученные с использованием образцов из этого примера, и импульсного ЯМР. Ясно, что стеарин имеет более высокое SFС при различных температурах по сравнению с сырьем в то время, как олеин имеет значительно более низкое SFC. "Тупиковая" фильтрация
Пример 1. Чтобы определить действие условий кристаллизации на известную "тупиковую" фильтрацию, осуществляли три опыта. Три фунта (1,361 мг) сливочного масла предварительно обрабатывали с использованием Метода А. Затем его разделяли на три порции по 1 фунту (0,454 кг) каждая и кристаллизовали с использованием способов В1, В2 и В3. Температуру кристаллизации поддерживали на уровне 25oC в каждом случае. Предварительно обработанное масло затем подвергали фильтрации с использованием 90 мм фильтрующей головки, снабженной мембраной Ultipor с порами 0б65 мкм. Во всех трех случаях только несколько капель олеина проникло через мембрану перед тем, как давление стало столь высоким, что стало невозможным продолжать фильтрацию. Пример 2. По примеру 1 с использованием мембраны HDC с большим размером пор - 10 мкм. В этом случае было установлено, что общий объем фильтрата был наибольшим, 95 мл, для масла, охлажденного методом В3. Другие два метода охлаждения дали почти такие же общие объемы фильтрата, примерно 65 мл. Примеры 1 и 2 показывают, что независимо от процедуры, при помощи которой масло охлаждали, при функционировании в режиме "тупиковой" фильтрации поток фильтрата будет снижаться до нуля из-за образования лепешки на поверхности мембраны. Чем меньше размер пор мембран, тем быстрее возникает забивка мембраны. Качество и скорость потоков при различных температурах фильтрации при использовании мембран с различными размерами пор. Пример 3. Десять фунтов (4,536 кг) сливочного масла предварительно обрабатывали по методу А, а затем кристаллизовали при температуре 29oC по методу В1. Масло охлаждали со скоростью примерно 1oC/мин от 60 до 26oC. Далее условия поддерживали еще в течение 30 мин, в течение которых масло достигало температуры 28oC. В конце этого периода термически обработанное масло направляли при помощи насоса на динамический микрофильтр со скоростью примерно 0,35 фунтов/мин (0,16 кг/мин). Металлический мембранный фильтрующий элемент, РММ, с размером пор 2,0 мкм, устанавливали в динамический фильтр. Этот динамический фильтр функционировал, как это уже было описано ранее. В общем случае условия работы следующие:
скорость вращения 600 об/мин;
тангенциальная скорость 120 м/мин;
давление фильтрации 4 - 5 бар. Другие условия приведены в табл.1. Температуру фильтрации поддерживали на уровне примерно 28oC, регулируя хладагент в рубашке динамического фильтра. Фильтрацию продолжали до тех пор, пока подача масла не прекратится. Фильтрат и концентрат собирали в отдельные контейнеры, причем отдельные скорости потока и температуры потоков отслеживали каждые несколько минут. Средние значения этих величин и данные о содержании твердого жира приведены в табл.2. Пример 4. Повторяли пример 3 за тем исключением, что температуру фильтрации снижали до 25oC. Условия обработки приведены в табл.1. Данные о потоке и содержании твердого жира сведены в табл. 2. Пример 5. Повторяли пример 3 за тем исключением, что использовали полимерную мембрану с размером пор 1,0 мкм. Время кристаллизации составило 1 ч, а температура фильтрации 29oC. Условия обработки сведены в табл.1. Данные относительно потока и содержания твердого жира приведены в табл.3. Пример 6. Повторяли пример 5 за тем исключением, что использовали температуру фильтрации 26oC. Условия обработки собраны в табл.1. Данные относительно потока и содержания твердого жира приведены в табл.3. Пример 7. Повторяли пример 4 за тем исключением, что в качестве среды для разделения использовали мембрану в 0,1 мкм. Условия обработки приведены в табл. 1. Данные относительно потока и содержания твердого жира собраны в табл.4. Примеры 3 и 4 осуществляли при тех же условиях за тем исключением, что использовали более низкую температуру фильтрации в примере 4. Как показано в табл. 2, скорость производства зависит от температуры обработки. Как можно видеть, температура фильтрации оказывает также воздействие на качество продукта. В примере 3 фиксировали 11% изменение во фракции фильтрата и 24% изменение во фракции концентрата. При помощи использования более низкой температуры в примере 4 различия соответствовали 17 и 46%. Аналогичные результаты отмечали при сравнении примеров 5 и 6, которые осуществляли с полимерными мембранами при тех же условиях, за исключением температуры фильтрации. Эффект температуры особенно значителен в случае сливочного масла, когда содержание твердого жира может возрасти с примерно 2% при 32oC до примерно 60% при 15oC. Эффект использования мембраны с различными размерами пор можно оценить при сравнении примеров 4, 6 и 7. Как можно ожидать, скорости потока фильтрата снижаются при использовании с меньшими размерами пор. Грубо говоря, это снижение соответствует пропорции снижения потока чистой воды, что указывает на то, что это влияние вызвано только более высоким сопротивлением мембраны с меньшим размером пор. Качество продуктов улучшается, когда используют мембраны с меньшим размером пор. Таблицы 2, 3 и 4 показывают, что качество фильтрата значительно увеличивается при использовании мембран с меньшим размером пор. Качество фракции концентрата не полностью зависит от размера пор используемой мембраны, а в сильной степени зависит также от используемой аксиальной скорости. Более низкое значение содержания твердого жира в примере 7 по сравнению с примером 6 очевидно объясняется использованием более высокой аксиальной скорости, которая, как представляется, заставляет некоторое количество жидкой фракции течь вместе с концентратом. Многократное фракционирование
Пример 8. Повторяли пример 4, за тем исключением, что сырьем была фракция фильтрата из примера 4, а не обычное сливочное масло. Условия обработки приведены в табл.5. Данные из этого примера собраны в табл.6. Пример 9А. По примеру 4, полученные данные сведены в табл.9. Фильтрат собирали для использования в качестве сырьевого материала для примера 9В. Пример 9В. Пример 9А повторяли за исключением того, что используемым сырьевым материалом был фильтрат из примера 9А, а используемая мембрана имела размер пор в 0,65 мкм. Полученные данные сведены в табл.5. Примеры 8, 9А и 9В показывают, что один и тот же сырьевой поток можно обрабатывать при помощи нескольких различных приемов, чтобы получить различные фракции с совершенно различными свойствами. В случае примера 9В фракция фильтрата существенно отличается от исходного сырьевого потока из примера 9А (табл.7). Кроме того, эти примеры показывают, что, с помощью подбора соответствующих температур фильтрации и размера пор используемой мембраны, свойства получаемых фракций можно варьировать в зависимости от целей. Эффект добавления воды
Пример 10. Повторяли пример 4 за тем исключением, что в сливочное масло добавляли 4 мас.% воды перед нагреванием и использовали давление фильтрации 2 бар. Полученные данные приведены в табл.8. При сравнении с примером 4 можно видеть, что добавление воды улучшает степень фракционирования. Пример 11. Повторяли пример 6 за тем исключением, что в масло добавляли 4 мас. % воды перед нагреванием и использовали давление фильтрации в 2 бар. Данные приведены в табл.9. Примеры 4 и 10 осуществляли при тех же условиях за тем исключением, что в примере 10 добавляли воду и использовали более низкое давление фильтрации. Табл. 8 показывает, что поток фильтрата на единицу перепада давления увеличивается при добавлении воды в жир. Можно также наблюдать значительное увеличение качества фильтрата. Сравнение примеров 6 и 11 дает те же результаты. Необходимо отметить, что фракция концентрата из примера 11 обладает более низким качеством, чем в примере 6, что может объясняться частичным поступлением жидкости в концентрат из-за слабого контроля за аксиальной скоростью во время эксперимента. Пример 12. Повторяли пример 4 за тем исключением, что использовали мембранный фильтрующий элемент в 10 мкм. Никаких существенных изменений не было отмечено ни во фракции фильтрата, ни во фракции концентрата при сравнении с сырьевым потоком. Таким образом, мембраны с размером пор в 10 мкм или больше, очевидно, слишком большие, чтобы представлять практическую ценность для осуществления настоящего изобретения.
Формула изобретения
0,65 мкм. 18. Способ по п. 14, отличающийся тем, что жировую композицию выбирают из группы, состоящей из бабассу, касторового масла, масла кокосовых орехов, кукурузного масла, хлопкового масла, льняного масла, oiticica, оливкового масла, пальмового масла, масла пальмовых ядер, арахисового масла, рапсового масла, масла сафлора, сезамового масла, соевого масла, подсолнечного масла, масла из рисовых отрубей, tsubaki, масла периллы, масла семян hemo, масла капока, масла из семян чая, тунгового масла, полутвердого животного (сливочного) масла, свиного сала, таллового масла, китового жира, селедочного масла, сардинового жира и менхэденового масла.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5