Способ получения бета-дикетонатов родия (iii) и иридия (iii)
Способ получения бета-дикетонатов родия (III) и иридия (III) относится к металлургии цветных металлов - получению летучих комплексов родия и иридия. Способ заключается в применении комплексных фторидов этих металлов в степени окисления (III), получаемых по реакции сплавления их гексанитритов со смесью гидрофторид калия-плавиковая кислота, взятых в определенном соотношении в качестве исходных для их взаимодействия с бета-дикетонами при соответствующих условиях. Количественное получение исходных соединений, используя дешевые реагенты, стандартное оборудование и малое число операций позволяет значительно упростить способ получения бета-дикетонатов родия и иридия при сохранении их высокого выхода. 2 з.п. ф-лы.
Изобретение касается области координационной химии, где в качестве лигандов выступают органические молекулы, а роль центрального атома играют благородные металлы, в частности родий и иридий. Эти соединения имеют как теоретическое значение - то есть модельных солей общего вида: (R1-CO-CH-CO-R11)3M где R1 = R11 - CH3 (ацетилацетонат); R1-CF3, R11-CH3 (трифторацетилацетонат); R1 = R11 - CF3 (гексафторацетилацетонат).
в которых металл имеет хелатное октаэдрическое окружение атомами кислорода, так и практическое применение. Сферы прикладного использования этих комплексов основаны на таких исключительных свойствах, как строгое стехиометрическое отношение металл-лиганд и способность возгоняться при сравнительно невысоких температурах. Последнее обстоятельство используется для получения пленок этих тугоплавких металлов (Т.пл. 2410oC и 1966oC иридия и родия соответственно) путем термолиза в невысоком температурном диапазоне 300-400oC. В отсутствии традиционно используемых электрохимических методов получения данных металлов на различных металлических подложках способ газофазного осаждения родия и иридия может стать наиболее перспективным. Основным фактором, сдерживающим широкое применение данных соединений на практике, является отсутствие надежных методов их синтеза, позволяющих получать эти координационные соединения с высоким выходом. Химическая суть процесса хелатообразования заключается в получении незаряженных комплексов со слабо координированными кислородными лигандами ацетилацетона. При учете конкуренции других лигандов за внутреннюю сферу родия или иридия, а также способности ацетилацетона к связыванию за счет углеродного атома, приводящего к образованию заряженных комплексов, становится понятным низкий выход целевых продуктов. Имеющиеся в научной и патентной литературе способы выделения данных трис-хелатных комплексов не лишены недостатков. Главным из них, на наш взгляд, является использование традиционно известных из химии этих соединений реагентов. Именно этот факт приводит к ведению целевого синтеза путем многостадийного процесса, в результате приводящего к низкому выходу продукта. По данным авторов [1, 2], применявших свежеосажденную гидроокись иридия, выделявшуюся при восстановлении его гексахлорокомплексов, он не превышает значения 15%. Объяснение этого заключается в высокой степени полимеризации гидроокисей, ее малой стабильности к окислению кислородом воздуха, а попытки проведения реакции в присутствии восстановителя к увеличению выхода не приводят. В связи с этим, как следует из [3], возникает необходимость проведения достаточно трудных стадий и поддержания некоторых специальных экспериментальных условий. В первую очередь это длительные процедуры нагревания (40 ч) иридиевой кислоты или трихлорида иридия, использование большого избытка ацетилацетона (10-кратное над стехиометрией), поддержание атмосферы инертного газа, выделение нужной фракции путем экстракции дихлорометаном. Все это делает эти способы малопродуктивными, трудоемкими, экономически неэффективными и, в конечном счете, нетехнологичными. Наиболее близким из известных способов по технической сущности решения и конечному результату является способ [4], авторы которого наиболее близко подошли к пониманию интимного механизма хелатообразования и факторов на него влияющих. Используя фторсодержащие комплексы, отличающиеся малой энергией связи металл-фтор в растворах, или их акватированные формы, они исключили конкурентное влияние лигандов исходной соли на процесс получения хелатов. В результате этого резко поднялся химический выход необходимых солей. Однако способ достижения таких значений использования благородных металлов все же имеет ряд существенных недостатков: первый из них заключается в использовании элементного фтора - чрезвычайно агрессивного газа, требующего для работы с ним специального оборудования, повышенных требований техники безопасности, обученного персонала; второй вытекает из высокой окислительной способности фтора, который реализует гексафторокомплексы родия и иридия в высших степенях окисления соответственно (IV и V). Это обстоятельство требует проведения дополнительных операций по получению фторокомплексов данных металлов в нужной степени окисления III. Таким образом, возникает необходимость поиска других фторирующих агентов, которые бы не влияли на исходную степень окисления этих металлов в их комплексных солях. В связи с этим в задачу изобретения входило повышение выхода целевых продуктов и упрощение всех стадий процесса за счет использования гексафторокомплексов родия и иридия, сразу имеющих степень окисления (111). Данная задача решается тем, что использованные фторокомплексы иридия и родия получают по реакции сплавления их гексанитритных солей со смесью бифторида калия с плавиковой кислотой в определенных соотношениях. Затем полученные соли растворяют в плавиковой кислоте и гидролизуют при нагревании. После этого проводят нейтрализацию и вводят раствор соответствующего бета-дикетона, проводя корректировку значения pH раствора для максимально возможного выделения конечного продукта из раствора. Основные отличительные признаки: использование гексафторокомплексов иридия и родия в нужной степени окисления, способ их получения, а также режимы и последовательность проведения всех стадий процесса. Именно для получения комплексных фторидов в степени окисления (111) возникает необходимость поиска фторирующих агентов, которые не влияли бы на исходное окислительное состояние металлов. В препаративной и технологической практике для решения таких задач используется безводный фтористый водород. Он не обладает окислительными свойствами, но работа с ним также представляет известные экспериментальные трудности. Решение поставленных вопросов может быть найдено использованием в качестве фторирующих агентов гидрофторидов щелочных металлов. По своей реакционной способности они приближаются к безводному фтористому водороду, но при этом имеют невысокие температуры плавления и кипения, что не требует применения высоких температур. Бифториды (гидрофториды) щелочных металлов сравнительно дешевые продукты, выпускаемые промышленностью в большом объеме. Температура плавления бифторида калия - наиболее удобного фторирующего реагента - составляет величину 238,7oC. Плавление его имеет конгруэнтный характер и в расплаве он в значительной степени диссоциирован. Плотность и вязкость расплавов бифторида прямолинейно понижается с ростом температуры. Термическая устойчивость бифторида калия лежит в диапазоне начала разложения 400oC и окончательного удаления HF при 500oC. Таким образом, фторирование бифторидом калия комплексных соединений родия и иридия может привести к получению целевых фторокомплексов в степени окисления 111. Наиболее подходящими для этой цели комплексными солями благородных металлов, как показывает анализ литературы [5], будут являться их гексанитриты. При сплавлении последних с бифторидом калия в результате обменной реакции нитритного комплекса образуется соответствующий фторокомплекс по реакции:
Формула изобретения
1. Способ получения бета-дикетонатов иридия (III) и родия (III) общего вида (R1-CO-CH-CO-R11)3M, где M Rh, Jr;R1, R11 CH3, CF3,
включающий растворение исходного комплексного соединения платинового металла в плавиковой кислоте и нагревание реакционной смеси, отличающийся тем, что в качестве исходного соединения использут гексафторокомплекс иридия (III) или родия (III), которые гидролизуют в кислой среде, подщелачивают, вводят избыток бетадикетона с последующим подщелачиванием реакционной смеси и выделением целевого продукта. 2. Способ по п.1, отличающийся тем, что гексафторокомплекс иридия (III) или родия (III) получают сплавлением гексанитритного комплекса соответствующего металла со смесью бифторида калия с плавиковой кислотой при их массовом соотношении 1 0,5 1,0. 3. Способ по пп.1 и 2, отличающийся тем, что в зависимости от металла и типа лиганда подщелачивание проводят до pН 3 7.