Способ оптимизации процесса механической обработки с последующим автоматическим обеспечением заданной износостойкости режущего инструмента и качества формирования поверхностного слоя и устройство для его осуществления
Использование: станкостроение, в частности автоматический выбор оптимальных режимов обработки с последующей многофункциональной диагностикой состояния процесса резания. Сущность изобретения: назначаются оптимальные режимы обработки и осуществляется дискретное восстановление после каждого рабочего цикла геометрии режущего клина электроискровым легированием в условиях периодического контактирования электрода-анода и инструмента-катода с ультразвуковой частотой и заданной амплитудой. Устройство позволяет наряду с оптимизацией режимов механической обработки с последующей многопараметрической диагностикой состояния процесса резания автоматически управлять электрическими и акустическими режимами электроискрового легирования в процессе дискретного восстановления геометрии режущего клина. 2 с. п. ф-лы, 4 ил.
Изобретение относится к автоматическому управлению процессом механической обработки деталей в станкостроении и может быть использовано для назначения, автоматического выбора и поддержания оптимальных режимов обработки на автоматизированном станочном оборудовании, обеспечивая выпуск деталей с заданными параметрами, определяющими эксплуатационные характеристики готовых изделий, и заданную износостойкость режущих инструментов, дискретно восстанавливая их геометрию после каждого рабочего прохода.
Существует различное множество критериев и способов оптимизации процесса механической обработки, в которых в качестве исходного физического параметра берут параметр процесса резания, функционально связанный с вариацией режимов обработки V, S и t. Основным фактором, определяющим режимы обработки, в том числе оптимальную скорость резания, является обрабатываемость. Известен способ определения оптимальных скоростей резания, основанный на проведении стойкостных испытаний, при котором за оптимальную скорость резания выбирают ту, на которой наблюдается наименьшая интенсивность износа режущего инструмента как исходного физического параметра. Недостатком известного способа является большая трудоемкость проведения стойкостных испытаний. Существует также различное множество других исходных физических параметров, характеризующих состояние и условия протекания процесса резания (объемный износ, минимум силы резания, максимальная температура стружки, изменения твердости обрабатываемого материала, тангенциальная виброскорость и др. ), положенных в основу разработки способов оценки обрабатываемости и назначения технологических режимов обработки, в частности оптимальной скорости резания при заданных значениях величины подачи и глубины резания. Все известные способы (аналоги) обладают одним общим недостатком - отсутствием оперативной информации об обрабатываемости и, как правило, представляют собой графические методы построения зависимостей для последующего анализа. Наиболее близкими по технической сущности и достижению поставленной цели, касающейся назначения оптимальных режимов обработки, являются способ автоматической диагностики и управления процессом механической обработки и устройство для его осуществления, включающий выбор исходного физического параметра, в качестве которого выбирают величину тока, протекающего в замкнутой технологической системе от ЭДС трения и резания, а также величину малых переходных электрических сопротивлений в сопряженных парах замкнутой технологической системы, по величине и закону изменения которых определяют оптимальные режимы обработки, состояние и условия протекания процесса резания в целом (авторское свидетельство 1392746, кл. B 23 Q 15/00, 1988). Известно устройство, реализующее указанный способ, включающее в себя бесконтактный преобразователь съема информации, выполненный в виде двух измерительных трансформаторов, и три основных канала формирования диагностических признаков и полезных сигналов, несущих информацию: - о моменте касания инструментом детали; - о величине и законе изменения постоянной и переменной составляющих тока "вихревого" характера, протекающего в реальной замкнутой технологической системе от ЭДС трения и резания металлов, несущих информацию об энергетических процессах зоны резания; - о величине и законе изменения малых переходных сопротивлений сопряженных контактируемых пар, образующих реальную упругую технологическую систему и функционально связанных с фактической площадью контакта инструмент-деталь-стружка. Известен также способ автоматического выбора оптимальных режимов обработки с последующей диагностикой состояния процесса и устройство (автотехнолог) для его осуществления, принятый за основной прототип, согласно которому назначаются и автоматически поддерживаются оптимальные режимы обработки и фиксируются предельные значения контролируемых технологических параметров, определяющих надежность функционирования автоматизированных станочных систем [1]. Однако даже при оптимальных режимах обработки стойкость режущего инструмента не остается постоянной, а изменяется с каждым рабочим его проходом. При этом увеличивается как размерный износ по задней грани, так и износ в виде "лунки" по передней грани, активно изменяется геометрия режущего клина, что в конечном счете приводит, как известно, к изменению характера процесса стружкообразования, температурно-скоростных и силовых факторов, возникающих в зоне резания и к ухудшению параметров качества формирования поверхностного слоя обработанной детали, а также ее точностных характеристик. Цель изобретения - повышение точности и обеспечение заданного качества формирования поверхностного слоя обработанной детали, а также ее точностных характеристик. Цель изобретения - повышение точности и обеспечение заданного качества формирования поверхностного слоя обрабатываемой детали и размерной стойкости режущего инструмента за счет дискретного восстановления геометрии режущего клина электро-искровым легированием (покрытие износостойким материалов) после каждого рабочего прохода на оптимальных режимах обработки. Указанная цель может быт достигнута только благодаря объединению и оптимизации двух технологических процессов механической обработки и электросилового легирования - нанесения износостойких покрытий непосредственно на автоматизированном станочном оборудовании после каждого рабочего прохода режущего инструмента, используя известный способ электроискрового нанесения покрытий (авторское свидетельство 1002124, кл. B 23 P 1/18, 1982). Сущность предлагаемого технического решения базируется на изученных особенностях динамики процесса (трения) резания на основе анализа спектра виброакустической эмиссии (ВАЭ), электромагнитных излучений зоны резания, а также на основе измерения постоянной и переменной составляющих тока, протекающего к замкнутой технологической системе от ЭДС трения и резания, измерении величины и закона изменения малых переходных активных сопротивлений в узлах, сопряженных пар и сил контактного взаимодействия. Особой информативностью обладают процессы, протекающие как в зоне стружкообразования, так и в контактной зоне при ультразвуковом легировании. Установлено, что только величина и закон изменения тока, протекающего в локальной зоне стружкообразования от источников ЭДС трения и резания, изменение их мощности несут в себе комплексную информацию о температурно-силовых и скоростных факторах процесса разрушения и переноса, а закон изменения удельного сопротивления этой зоны - о наступлении фазоструктурных превращений. Это обусловлено тем, что действия температурно-силовых и скоростных факторов, возникающих в зоне стружкообразования и в контактной зоне нанесения износостойких покрытий электроискровым способом легирования с возбуждением ультразвуковых колебательных смещений на аноде-электроде, в свою очередь, несут свое отображение в изменении фазоструктурного и напряженно-деформированного состояния макро- и микрообъемов материала, переходящего в стружку или переносимого на поверхность покрытия. Регистрация указанных параметров и формирование на их основе диагностических признаков важно не только с точки зрения построения систем многопараметрической диагностики и прогнозирования условий процесса контактного взаимодействия, но и для изучения кинетики фазоструктурных превращений материала в контактных зонах, сопровождающихся изменением его физико-механических характеристик. Учитывая то, что все свойства материалов структурно-чувствительны, для их оценки могут быть использованы и используются известные из металловедения физические методы регистрации структурно-чувствительных параметров, но все они практически не приемлемы для экспресс-оценки указанных параметров непосредственно в ходе обработки или в процессе электроискрового легирования в реальных промышленных условиях. Наиболее чувствительным физическим параметром является величина изменения на уровне удельного активного сопротивления



















где h - толщина покрытия; lа - средняя приведенная активная длина (высота) микровыступов, участвующих в контакте и определяющих фактическую площадь контакта Sфпк между анодом-электродом и катодом-инструментом. Из анализа приведенного выражения (1) следует, что величина переходного сопротивления в зоне легирования не остается постоянной, а изменяется сложным образом в функции изменения

KR = Rпэ/Rпи (2),
где Rпэ - величина переходного сопротивления с эталонным покрытием; Rпи - величина переходного сопротивления с исследуемым покрытием. Приведенный безразмерный критерий (2) относительной оценки удельных сопротивлений при одних и тех же условиях измерения Rпэ и Rпи исключает влияние соединительных проводов, сопротивлений материала электрода-анода и инструмента-катода на погрешность измерения. В основу формирования диагностических признаков и полезных сигналов управления параметрами электроискрового легирования в условиях периодического контактного взаимодействия анода с катодом с ультразвуковой частотой положены изученные особенности процесса легирования, а также синергизм электрической искры и ультразвуковых колебательных смещений анода с разными векторными направлениями на процессы диспергирования и диффузии материала электрода-анода на поверхность инструмента-катода с последующим ультразвуковым динамическим поверхностным упрочнением. Так как ультразвуковые колебательные смещения электрода-анода с амплитудой 2А изменяют свое векторное направление относительно исходного состояния, а также изменяют (модулируют) расстояние от анода к катоду, то становится очевидным, что для образования (зажигания) искры и обеспечения одинаковой интенсивности искрообразования необходимо изменять величину приложенного напряжения пробоя между анодом и катодом или стабилизировать импульсное (или непрерывное) значение тока в процессе образования искры, а также исключать подачу напряжения в момент соприкосновения анода и в течение длительности упругопластического контакта. Кроме того, для обеспечения эффективности (синергизма) действия двух или нескольких факторов в одном и том же направлении, в частности движение потока ионов в направлении тока в процессе искрообразования (образования плазмы) и смещение рабочего наконечника - анода в том же направлении к инструменту - катоду с большой колебательной скоростью


В конце цикла каждого ультразвукового комплексного колебательного смещения в момент соприкосновения анода с катодом искрообразование прекращается и начинается поверхностное упругопластическое динамическое упрочнение перенесенного и покрываемого материала. То есть в конце каждого цикла ультразвуковых колебаний осуществляется активация поверхности за счет продольно-крутильных УЗК и представляется как динамический удар с поворотом рабочего наконечника о поверхность покрываемого изделия. Наличие крутильной (сдвиговой) составляющей ультразвуковых колебательных смещений, протекающих без изменения объема возмущающей среды покрытия, во-первых, исключает микросхватывание и условия возможного обратного переноса материала в момент удара, а во-вторых, изменяет траекторию движения положительно заряженных ионов переносимого материала от анода к катоду на стадии их сближения. При таком сочетанном механизме воздействия электрического и акустического полей ионы металла от анода к катоду на траектории сближения движутся не направленным пучком, а рассеянным, что в значительной степени уменьшает высоту микронеровностей, которые образуются в результате осаждения ионов переносимого металла - анода на детали - катода. На фиг. 1 изображена схема устройства, реализующего способ; на фиг. 2 - диаграмма напряжений на выходе основных функциональных блоков устройства, поясняющая принцип формирования диагностических признаков и полезных сигналов устройства; на фиг. 3 - диаграмма выходных напряжений основных блоков контура цепи импульсного искрообразования; на фиг. 4 - упрощенная схема контура задания, формирования и автоматической стабилизации величины тока в цепи искрообразования. Устройство, реализующее способ, представляет собой единую электромеханическую многоконтурную замкнутую информационно-преобразующую систему, состоящую из следующих взаимосвязанных контуров:
1. Контур возбуждения ультразвуковых колебаний (УЗК) и автоматического управления акустическим режимом, временем воздействия ультразвуковыми колебаниями в контактной зоне "анод (электрод) - катод (инструмент)" акустического электроискрового метода нанесения износостойких покрытий, включающий в себя последовательно соединенные управляемые задающий генератор 1, управляемый электронный делитель напряжения 2, усилитель мощности 3, сбалансированный импедансный мост 4 с подключенным блоком 5 формирования управляющих сигналов автоматической подстройки резонансной частоты (АПЧ) - блока 1 и автоматической подстройки амплитуды (АПА) - блока 2 в функции изменения нагрузки на акустическую систему 6, состоящую из механически соединенных магнитострикционного или пьезоэлектрического вибратора 7, подключенного в одно из плеч импедансного моста 4, экспоненциального трансформатора колебательной скорости 8 с наклонными витыми канавками преобразования продольных УЗК вибратора 7 в комплексные с преобразованием крутильной (сдвиговой) составляющей колебания рабочего наконечника 9 из наносимого (износостойкого) материала, выполняющего функции "анода", на "катод" - вершину режущего инструмента 10, механически закрепленного на суппорте 11. Для автоматической установки вершины режущего инструмента 10 в исходное состояние - точку А и последующего обеспечения линейной скорости V относительного скольжения вершины резца 10 рабочего наконечника "анода" 9 суппорт 11 через винтовую пару 12 кинематически связан с управляемым автоматизированным станочным электроприводом 13, управляющий вход которого через последовательно соединенные детектор 14 со встроенным блоком усреднения и дифференциальный усилитель 15 с задатчиком зон - установки относительного нуля - соединен с выходом усилителя мощности 3 ультразвукового генератора возбуждения комплексных УЗК на рабочем наконечнике - "аноде" 9. 2. Контур задания, стабилизации и автоматического управления тарированным усилием прижатия "анода" 9 к вершине режущего инструмента - "катода" 10 в функции изменения диссипативных свойств и фактической площади контакта "анод-катод", включающий механическую пружину 16 компенсации собственного веса акустической системы 6, изолированной от корпуса и установленной в каретке 17 относительно плоскости 18 соприкосновения анода 9 с катодом 10 в исходной точке А; массу (m) 19 обеспечения заданного статического тарированного усилия нормального давления; цепь, состоящую из последовательно соединенных безконтактного преобразователя 20 возбуждения и регистрации электрических зондирующих (стимулирующих) сигналов, систему диагностики 21, выполненную согласно прототипу, включающую блок 22 формирования полезного сигнала о моменте касания инструментом 10 обрабатываемой детали (не показана) или рабочего наконечника 9 и о фактической площади контакта (ФПК) между анодом и катодом, блок 23 формирования полезного сигнала об удельной энергии разрушения обрабатываемого материала и относительной экспресс-оценке обрабатываемости новых конструкционных материалов по отношению к эталонной стали, масштабного усилителя 24 выходного сигнала ФПК, дифференциального усилителя 25 с дополнительным входом задания усилия PN, нормального давления (PN = Gог

























при S <r. Для резца с незакругленной вершиной (r = 0) величины подачи выбирают из следующего классического выражения:
S






где Rz - параметр шероховатости;








v






где Kп - поправочный коэффициент, учитывающий влияние физико-механических свойств инструментального материала. Для быстрорежущей стали Kп = 0,12, для твердых сплавов Kп = 0,95-1 и для минералокерамики Kп = 1,4-1,9. При обработке неизвестных материалов задаются значениями параметров глубины резания и подачи, исходя из выбранного вида обработки требуемого качества формирования поверхностного слоя (параметра шероховатости и волнистости) согласно классическим методикам или справочникам, а оптимальное значение скорости резания (исходя из выбранного критерия оптимальности и материала режущего инструмента) определяют автоматически согласно прототипу с последующей многопараметрической диагностикой состояния процесса резания и защиты режущих инструментов от поломки. В свою очередь, наличие выходного полезного сигнала блока 23, соответствующего текущей мощности разрушения обрабатываемого материала или величине тока Iт, позволяет произвести относительную экспресс-оценку обрабатываемости неизвестных материалов по отношению к эталонной стали, например стали 45, непосредственно в процессе контрольной обработки эталонного и исследуемого материалов. В таком случае критерий обрабатываемости Kо определяют как отношение токов Iэ - при обработке эталонной стали и Iи - при обработке исследуемого материала Kо = Iэ/Iи. Зная оптимальную скорость резания эталонной стали (Vэ) и значение коэффициента обрабатываемости (Kо), оптимальную скорость резания исследуемого материала Vи определяют из выражения
Vи = Vэ



т.к. при квазивибрационном резании параметры















1. Увеличивают частоту искрообразования по мере сближения контактируемой пары анод-катод, а также скважность (gг) тактовых импульсов gг = 2-5 путем автоматического управления работой генератора 39 сигналом, функционально связанным с величиной и законом изменения переходного сопротивления в контактной зоне анод-катод (фиг. 2е). Такой сигнал управления формируют с помощью цепи, образованной блоками 20, 21, 22 и 40, аналогично прототипу. 2. Автоматически в функции приращения нагрузки увеличивают опорное напряжение +Uо, подаваемое на неинвертирующий вход первого компаратора 42, уменьшая тем самым длительность прямоугольного импульса на его выходе (см. фиг. 2в). В таком случае сигнал управления формируют с помощью цепи, подключенной к выходу усилителя мощности 3 и образованной последовательно соединенными детекторами 14 со встроенным интегратором и дифференциальным усилителем 15 с установкой (регулировкой) относительного нуля на его выходе при отсутствии соприкосновения и внешней нагрузки в контактной зоне анод-катод. Связь между выходом блока 15 и регулятором величины опорного напряжения (+U) компаратора 42 с целью упрощения схемы на фиг. 1 не показана. С помощью указанной связи и формируемого сигнала управления автоматически увеличивают длительность импульсов (фиг. 2д) на выходе триггера 41, в течение которого на траектории сближения осуществляют искрообразование. Из анализа приведенных осциллограмм (фиг. 2), а также функциональных связей между блоками 37, 38, 39 и 41 следует, что только при наличии трех аналоговых сигналов на входах первой схемы совпадения 37 и двух сигналов на входах второй схемы совпадения 38 обеспечивается поочередное включение электронных ключей 29 и 30, а следовательно поочередное включение цепи заряда и разряда конденсатора 31 в контуре искрообразования. Скорость и величину относительного переменения инструмента 10 по отношению к электроду 9 устанавливают задатчиком скорости регулируемого электропривода 13 продольной подачи. С помощью электрической связи между блоками 13 и 15 исключают возможность появления "мостиков схватывания" в зоне искрообразования и их разрушение путем автоматического увеличения скорости относительного скольжения в направлении

Формула изобретения

при S < r и для резца с незакругленной вершиной (r 0),
S






где

Е модуль Юнга;
G модуль сдвига;


D диаметр детали;
RZ номинальное значение параметра требуемой шероховатости;
r радиус вершины резца;


причем для уменьшения или увеличения величины подачи, сохраняя условие волноводного согласования, необходимо соответственно разделить или умножить ее на волноводный коэффициент
K

где m 0, 2 4, целое четное число,
а затем величину скорости резания выбирают за пределами наростообразования из соотношения связи оптимального соотношения параметров V


V






где Ки поправочный коэффициент, учитывающий влияние физических свойств инструментального материала (для быстрорежущей стали Ки 0,12, для твердых сплавов Ки 0,8 1,0 и минералокерамических Ки 1,4 1,9);
gт параметр, характеризующий скорость выравнивания температуры в обрабатываемом материале,
затем на оптимальных расчетных режимах обработки предварительно и дискретно после каждого прохода резца в его исходном состоянии восстанавливают геометрию режущего клина путем автоматического нанесения износостойкого покрытия интерметаллидов ультразвуковым акустоискровым методом на траектории сближения контактируемой пары анод-катод на толщину 5 15 мкм, при этом интенсивность искры, параметры воздействия ультразвуковых колебаний (УЗК) и тепломассообмена поддерживают стабильными, для чего автоматически стабилизируют амплитуду УЗК, поддерживая эффективную колебательную скорость покрытия постоянной, импульсное значение тока на пути сближения от источника образования искры, а также выбирают и поддерживают номинальным усилие PN нормального давления между анодом и катодом из соотношения
PN=


где

Sфпк фактическая площадь контакта между рабочей поверхностью покрытия режущего инструмента (катода) и ультразвуковым электродом-анодом. 2. Устройство для оптимизации технологического процесса механической обработки с последующим автоматическим обеспечением заданной износостойкости режущего инструмента и качества формообразования поверхностного слоя, включающее два диагностических канала, отличающееся тем, что оно дополнительно снабжено системой дискретного восстановления геометрии режущего клина инструмента после каждого его рабочего прохода, включающая в себя четыре взаимосвязанных контура автоматического формирования и управления акустическими и электрическими параметрами импульсов электроэрозионного легирования в условиях периодического контактирования анода-электрода и инструмента-катода с ультразвуковой частотой и заданной амплитудой, образующих единую резонирующую информационно-преобразующую систему, выполненную в виде первого, второго, третьего и четвертого контуров, при этом первый контур возбуждения ультразвуковых колебаний и автоматического управления акустическим режимом в контактной зоне анод-катод включает в себя типовой ультразвуковой генератор, состоящий из соединенных в кольцо задающего генератора, электронного делителя напряжения, усилителя мощности, сбалансированного импедансного моста, в одно из плеч которого включена акустическая головка, включающая механически соединенные вибратор, трансформатор колебательной скорости-концентратор со встроенным преобразователем продольных ультразвуковых колебаний вибратора в комплексные с преобладанием крутильной составляющей колебательных смещений электрода-анода, и блок формирования управляющих сигналов автоматической подстройки частоты и автоматической подстройки амплитуды, первый контур содержит также цепь формирования сигнала управления скоростью относительного скольжения режущего инструмента относительно электрода, состоящую из детектора с встроенным интегратором и дифференциального усилителя с задатчиком относительно нуля на его выходе, подключающую входом детектора к выходу усилителя мощности ультразвуковых колебаний генератора, а выходом дифференциального усилителя к управляющему входу электрического привода поперечной подачи режущего инструмента, установленного в суппорте станка, кинематически связанного через винтовую пару с электроприводом поперечной подачи относительно электрода акустической головки, установленной в каретке с возможностью изоляции последней от корпуса, обеспечивающей перемещение электрода в перпендикулярном направлении к покрываемой поверхности инструмента при вариации усилия нормального давления и стабилизации зазора h 2А в контактной зоне анод-катод, второй контур задания и автоматического управления тарированным усилием прижатия анода к катоду в функции изменения диссипативных свойств и фактической их площади контакта содержит механическую пружину компенсации собственного веса акустической системы относительно плоскости нанесения покрытий, массу обеспечения заданного статического усилия нормального давления и цепь, состоящую из последовательно соединенных масштабного усилителя выходного сигнала о фактической площади контакта, дифференциального усилителя с дополнительным выходом задания усилия Pr нормального давления, усилителя мощности электромагнита, изменяющего (модулирующего) величину тарированного усилия прижатия, при этом вход масштабного усилителя упомянутой цепи подключен к выходу первого диагностического канала регистрации момента касания и измерения фактической площади контакта, третий контур формирования управляемой цепи искрообразования выполнен состоящим из источника постоянного тока и коммутационной емкости, а также первого и второго управляемых электронных ключей, обеспечивающих соответственно цепь заряда емкости от источника питания и ее разряда через внешнюю цепь анод-катод, которая дополнительно снабжена цепью формирования управляющих сигналов контура для стабилизации импульсного значения тока искрообразования, состоящей из балластного сопротивления, включенного последовательно с контактируемой парой анод-катод и ограничивающего допустимое импульсное значение тока через второй управляемый ключ, и последовательно соединенных типового детектора (блока памяти импульсного значения тока), схемы сравнения с подключенным к второму входу задатчиком тока и двухвходовым пороговым элементом (компаратором), второй опорный вход которого соединен с движком регулируемого делителя напряжения, подключенного параллельно коммутационной емкости, а выход порогового элемента соединен с одним из входов трехвходовой схемы совпадений четвертого контура управления, управляющей первым электронным ключом цепи заряда коммутационного конденсатора от источника питания, при этом четвертый контур автоматического формирования, управления и модуляции электрическими параметрами высокочастотных импульсов зарядкой и разрядкой цепей конденсатора искрообразования на траектории сближения контактируемой пары электродов, образован дополнительно введенной двухвходовой схемой совпадения и трехвходовой схемой совпадения, управляемым высокочастотным генератором тактовых импульсов, масштабным усилителем, подключенным выходом к управляющему входу генератора тактовых импульсов, а входом к выходу канала регистрации момента касания и фактической площади контакта первого диагностического канала, двухвходовым триггером, а также первым и вторым двухвходовым компараторами, причем инвертирующий вход первого компаратора соединен с неинвертирующим входом второго и соединен с выходом ультразвукового генератора-вибратора, а вторые входы неинвертирующий первого и инвертирующий второго соединены с введенными блоками задания соответствующих опорных напряжений величиной, равной начальному амплитудному значению положительного и отрицательного полупериодов выходного напряжения ультразвукового генератора, а входы триггера соединены с выходами первого и второго пороговых элементов, в свою очередь выход триггера соединен с первым и объединенными входами трехвходовой и двухвходовой схемой совпадения, вторые входы которых соответственно соединены с первым прямым и вторым инверсным выходами управляемого генератора тактовых импульсов, а выходы трехвходовой и двухвходовой схем совпадения соответственно соединены с управляющими входами первого и второго электронных ключей цепи искрообразования, в свою очередь третий вход трехвходовой схемы совпадения соединен с выходом порогового элемента цепи третьего контура стабилизации импульсного значения тока.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4