Способ индикации бактериальных антигенов
Использование: иммунология, экспрессная индикация бактериальных средств в чрезвычайных ситуациях. Сущность изобретения: реакцию агглютинации смеси исследуемого материала и иммуноглобулинового полиакролеинового диагностикума проводят в электролите, используемом и в качестве разводящей жидкости под воздействием электрического поля при напряженности 1000-1200 В/см и плотности тока 0,2-0,4 А/мм2 в течение 2-5 мин. Для этого смесь исследуемого материала и диагностикума помещают в микрокамеру, изолированную от электролита токопроводящим материалом и расположенную изолирующими проводниками перпендикулярно направленности электрического поля. Учет результатов ведут под микроскопом. 1 ил.
Изобретение относится к области иммунологии и может быть использовано для экспрессной индикации бактериальных средств при возникновении очага бактериального заражения.
Известен способ постановки реакции пассивной гемагглютинации при индикации бактериальных средств, который включает титрование исследуемого материала в разводящей жидкости, внесение эритроцитарных диагностикумов и наблюдение за формированием эритроцитами диагностикумов на днищах емкостей типичной картины окончания реакции (Инструкция по применению серологических методов диагностики при эпизоотологическом обследовании природных очагов чумы. Саратов, 1974 г. с. 38-39). Недостатком этого способа является длительность реакции (2-4 ч), что не позволяет его использование для экспрессной индикации. Кроме того, эритроцитарные диагностикумы обладают недостаточностью при длительном хранении, собственной антигенностью, нестандартностью физико-химических свойств, что снижает точность индикации бактериальных средств. В последнее время в стране и за рубежом активно применяют полимерные микрочастицы с заданными физико-химическими свойствами, на основе которых получают диагностические препараты. Например, испытания лиофилизированного полимерного иммуноглобулинового диагностикума при обнаружении и идентификации возбудителя туляремии и объемных реакциях агломерации (РАС) по типу реакции непрямой гемагглютинации (РНГА) показали соответствующие медикобиологическим требованиям результаты по активности, специфичности и чувствительности препарата. Реакция демонстративна, стабильна, легко учитывается за счет яркой окраски препарата (современные аспекты природной очаговости, эпидемиологии и профилактики особо опасных инфекционных болезней. Тезисы докладов научной конференции, Омск, октябрь, 1993 г. Ставрополь, 1993 г. с.214-215). Однако учет результатов реакции осуществляется через 1,5-2,0 ч, что не обеспечивает экспрессность метода. Наиболее близким по технической сущности к заявляемому изобретению является выбранный в качестве прототипа способ диагностики возбудителя чумы по обнаружению капсульного антигена в реакции агглютинации латексного антительного диагностикума (Рудник М.П. Груднева Л.Г. Экспресс-диагностика возбудителя сумы с использованием реакции агглютинации латекса. Проблемы природно-очаговых и зоонозных инфекций в Сибири и на Дальнем Востоке. Тезисы докладов к региональной научно-практической конференции 16-17 сентября 1993 г. Чита, 1993 г. с.134-135). Этот способ включает постановку двух отдельных серологических реакций, проводимых объемным и капельным методами и осуществляется следующим образом. Серодиагностику капсульного антигена проводили путем постановки реакции агглютинации латекса по типу РНГА объемным методом в лунках планшета для иммунологических реакций с микробными взвесями возбудителя чумы или с раствором антигена, с использованием диагностикума чумного иммуноглобулинового полиакролеинового. Учет результатов реакции проводили через 1,5-2,0 ч по формированию типичной картины скончания реакции ("зонтики", "пуговки"). Экспресс-диагностику проводили путем постановки реакции агглютинации капельным методом на стекле, осуществляя учет результатов реакции через 4-15 мин по видимым хорошо сформированным агглютинатам с полным просветлением жидкости. У прототипа и заявляемого способа имеются следующие сходные существенные признаки. Проведение реакции агглютинации внесением иммуноглобулинового полиакролеинового диагностикума с последующим учетом результатов реакции. Недостатком прототипа является неудовлетворительная точность экспресс-диагностики. Учет результатов реакции, выполняемый капельным методом на стекле, возможен в течение 4-15 мин с момента ее постановки, поскольку через 30 мин появляются спонтанные агглютинаты с отрицательных контролях. Кроме того, постановка серологической реакции капельным методом сопряжена с необходимостью отдельного проведения раститровки исследуемого материала, с возможностью растекания капель на поверхности стекла и смешиванию с соседними, что приводит к нестандартным условиям образования и учета комплексов. Учет более точных результатов объемной реакции непрямой суспензионной агглютинации РНСА возможен через 304,0 ч, что не обеспечивает экспрессность способа. Целью изобретения является обеспечение экспрессной индикации бактериальных средств с требуемой точностью результатов реакции за счет ускорения процесса формирования типичной картины окончания реакции. Поставленная цель достигается тем, что реакция агглютинации смеси исследуемого материала и иммуноглобулинового полиакролеинового диагностикума проводится в электролите, который используется и в качестве разводящей жидкости, под воздействием электрического поля при напряженности 1000-1200 В/м и плотности тока 0,2-0,4 а/мм2 в течение 2-5 мин, при этом смесь исследуемого материала и диагностикума помещается в микрокамеру, изолированную от электролита токопроводящим материалом и расположенную изолирующими проводниками перпендикулярно направленности электрического поля, учет результатов реакции осуществляется визуально под микроскопом. При оптимально подобранных значениях напряженности электрического поля и плотности тока происходит нарастание значений поверхностных зарядов, за счет электродвижущих сил диагностикуму и бактериальному антигену, находящимся в электролите, сообщаются кинетические свойства, что и приводит к ускорению и усилению взаимодействия последних. Сокращение сроков индикации антигенов происходит за счет ускоренного формирования видоспецифических комплексов иммуноглобулиновых полиакролеиновых диагностикумов с антигенами в электрическом поле. Оптимальные значения режимов реакции смеси исследуемого материала и диагностикума в электролите под воздействием электрического поля установлены по зависимости скорости формирования типичной картины агглютинации в объеме опытной микрокамеры от напряженности электрического поля в В/м (кривая 1) и плотности тока в А/мм2 (кривая 2), представленным на фиг,1, где по оси ординат представлена значения напряженности электрического поля и плотности тока, по оси абцисс время агглютинации в мин. Точки пересечения кривых 1 и 2 и их протяженность в рамках интервалов времени (2-5 мин), достаточных для осуществления экспрессной индикации, очерчивают геометрическую фигуру (заштрихованный сегмент) определенной площади, включающий совокупность оптимальных параметров напряженности поля (1000-1200 В/м) и плотности тока (0,2-0,4 А/мм2). Крайняя правая тоска пересечения кривых 1 и 2 ограничивает максимальные параметры напряженности и плотности тока, превышение которых ведет к разрешению агглютинирующих комплексов. Возможность осуществления способа с использованием полной совокупности заявляемых признаков подтверждается примерами конкретного выполнения. Пример 1. Исследуемый материал смыв с поверхности (дальнейшем смыв) заразили клетками чумного вакцинного штамма Y.pestis EV в концентрации 0,2

Формула изобретения
Способ индикации бактериальных антигенов в реакции агглютинации, включающий смешивание исследуемого материала и иммуноглобулинового полиакролеинового диагностикума в разводящей жидкости и визуальный учет результатов реакции, отличающийся тем, что реакцию проводят в электролите, используемом в качестве разводящей жидкости, под воздействием электрического поля при напряженности 1000 1200 В/м и плотности тока 0,2 0,4 А/мм2 в течение 2 5 мин, при этом смесь исследуемого материала и диагностикума помещают в микрокамеру, изолированную от электролита токопроводящим материалом и расположенную изолирующими проводниками перпендикулярно направленности электрического поля, а учет результатов ведут под микроскопом.РИСУНКИ
Рисунок 1