Способ выработки навигационных параметров и вертикали места
Использование: в области гироскопического приборостроения для обеспечения навигации морских, воздушных и наземных движущихся объектов, а также для непосредственной или косвенной стабилизации различных средств в горизонте, например гравиметрических чувствительных элементов. Сущность изобретения: в предлагаемом способе инвариантное удержание плоскости горизонта и выработка навигационных параметров обеспечиваются с помощью гироплатформы, у которой в качестве гироскопического чувствительного элемента используется один трехстепенной гироскоп, абсолютную угловую скорость моделируемого трехгранника Дарбу в проекциях на его оси вырабатывают аналитически, а сигналы управления гироскопом, установленным в двухосном карданном подвесе с осью кинетического момента, перпендикулярной осям чувствительности акселерометров, пропорциональные горизонтальным составляющим абсолютной угловой скорости связанного с объектом трехгранника Дарбу, вырабатывают по сигналам акселерометров, пропорциональным проекциям кажущегося ускорения. 1 ил.
Изобретение относится к области гироскопического приборостроения и может быть использовано преимущественно для обеспечения навигации морских, воздушных и наземных движущихся объектов, а также для непосредственной или косвенной стабилизации различных средств в горизонте, например гравиметрических чувствительных элементов.
Известен способ выработки навигационных параметров и вертикали места (1), заключающийся в измерении сигналов, пропорциональных проекциям составляющих кажущегося ускорения, измеренных при помощи акселерометров, оси чувствительности которых ориентированы по оси приборного трехгранника, связанного с гироплатформой, формирование сигналов управления гироплатформой, отработка сформированного сигнала при помощи гироскопа, удержание гироплатформы в плоскости горизонта и определение навигационных параметров с учетом информации от внешних источников. Недостатком этого способа является сравнительная громоздкость его реализации. Технический результат изобретения упрощение выработки навигационных параметров и вертикали места за счет сокращения источников первичных сигналов (в частности, исключается необходимость в сигнале датчика абсолютной угловой скорости вокруг вертикальной оси, а следовательно, и в самом датчике абсолютной угловой скорости, во вторичных источниках питания для его запитки и в устройстве сопряжения датчика с вычислителем). Указанный технический результат достигается тем, что абсолютную угловую скорость вырабатывают аналитически в проекциях на оси моделируемого трехгранника Дарбу, а сигналы управления, пропорциональные горизонтальным составляющим абсолютной угловой скорости трехгранника Дарбу, связанного с объектом, вырабатывают по сигналам акселерометров, а для отработки сигналов управления используют установленный в двухосном кардановом подвесе гироскоп, ось кинетического момента которого перпендикулярна осям чувствительности акселерометров. В качестве исходных сигналов для выработки абсолютной угловой скорости моделируемого трехгранника Дарбу и навигационных параметров используют сигналы акселерометров, установленных на гироплатформе, а также может быть использована в том или ином виде внешняя навигационная информации. Например, от лага или, если это позволяют эксплуатационные условия, от спутниковой системы навигации. На чертеже представлена функциональная схема гирогоризонткомпаса, где приняты следующие обозначения: 1 гиростабилизированная платформа в двухосном карданном подвесе, 2 блок управления гироплатформой и выработки навигационных параметров, 3 блок приема информации о скорости объекта, 4 - блок управления двигателями стабилизации, 5 трехстепенной гироскоп, 6, 7 - датчики момента гироскопа, 8, 9 датчики углов гироскопа, 10, 11 - акселерометры, 12, 13 двигатели стабилизации, 14 датчик килевой качки, 15 датчик бортовой качки объекта. Гирогоризонткомпас содержит гиростабилизированную платформу 1, блок управления гироплатформой и выработки навигационных параметров 2, на гиростабилизированной платформе 1 расположен трехстепенной гироскоп 5 с датчиками момента 6, 7 и датчиками углов 8, 9, два акселерометра 10, 11, оси чувствительности которых ортогональны между собой и параллельны плоскости гироплатформы, выходы акселерометров 10, 11, выход блока приема информации о скорости объекта соединены с блоком управления гироплатформой 2, выходы которого соединены с датчиками момента гироскопа 6 и 7, входы блока управления двигателями стабилизации гироплатформы 4 соединены с выходами датчиков углов гироскопа 8, 9, выходы блока управления двигателями стабилизации гироплатформы 4 соединены с соответствующими двигателями стабилизации 12, 13. Гирогоризонткомпас функционирует следующим образом: ось кинетического момента H в исходном положении ортогональна плоскости чертежа, так что оси подвеса гироскопа и ось H, когда нет наклона объекта относительно плоскости горизонта, составляет ортогональный трехгранник. Гироплатформа 1 с помощью двигателей стабилизации 12 и 13 по сигналам рассогласования датчиков углов гироскопа 8 и 9 все время удерживается в одной плоскости с кожухом гироскопа 5. Кожух гироскопа 5 вместе с гиростабилизированной платформой 1 приводится в горизонт и удерживается в горизонте с помощью моментов, накладываемых через датчики моментов 6 и 7 гироскопа 5 токами управления по сигналам, вырабатываемым в блоке управления гироплатформой 2. Эти токи управления соответствуют горизонтальным составляющим абсолютной угловой скорости трехгранника Дарбу, связанного с объектом, повернутую на угол K курс объекта относительно географического трехгранника Дарбу. В свою очередь сигналы, по которым вырабатываются токи управления гироскопа 5 и навигационные параметры, формируются в блоке управления гироплатформой и выработки навигационных параметров 2 в результате обработки величин горизонтальных составляющих ускорений вершины трехгранника Дарбу, измеренными акселерометрами 10 и 11, используя величину вертикальной составляющей абсолютной угловой скорости моделируемого трехгранника и внешнюю информацию. В качестве исходной системы координат выберем связанный с объектом трехгранник Дарбу







R радиус Земли,


где






ax, ay показания акселерометров,
причем

где



Dax,

при этом

где



где vл скорость объекта от Лага из блока 5,
Kпр. приборное значение курса объекта,


Широта места может также определяться как счислимое значение с использованием информации о скорости от Лага и значения приборного курса объекта:




где V1=Vл,

Kпр. и







где


где


с1 и с2 заданные функции. Предлагаемый способ выработки навигационных параметров и вертикали места может быть использован в качестве режимов работ для полуаналитических инерциальных систем.
Формула изобретения
РИСУНКИ
Рисунок 1