Способ определения параметра смачиваемости поровых каналов пород-коллекторов
Использование: в области исследования свойств пористых материалов и при подсчете запасов нефти и газа, а также при проектировании рациональных систем разработки нефтяных месторождений. Сущность: подготавливают образец для исследования, определяют его проницаемость, далее образец центрифугируют при различных режимах вращения центрифуги. Определяют при этом зависимость капиллярного давления дренирования эффективного порового пространства образца от водонасыщенности и зависимость капиллярного давления впитывания динамического порового пространства образца от водонасыщенности. Затем по полученным зависимостям строят нормированные дифференциальные кривые зависимости частоты встречаемости радиусов поровых каналов от размера для динамического и эффективного порового пространства и, используя эти кривые, определяют параметр смачиваемости для конкретного радиуса пор или их диапазона. 3 ил.
Изобретение относится к области исследования свойств пористых материалов, в частности к определению параметра смачиваемости поровых каналов естественных пород-коллекторов, и может быть использовано при подсчете запасов нефти и газа, а также при проектировании рациональных систем разработки нефтяных месторождений.
Известен способ определения смачиваемости пород-коллекторов, согласно которому экспериментальным путем определяет проницаемость, пористость, проводят двойную капиллярометрию путем вытеснения воды нефтью и нефти водой, задаваясь рядом дискретных значений давлений. Определяют толщину пленок воды и нефти, удерживаемых поровой поверхностью каждого образца, по этим данным производят разделение образцов на гидрофильные и гидрофобизованные, а значение краевого угла смачивания устанавливают по соответствующим формулам. Устанавливают корреляционную связь между краевым углом смачивания и параметром влажности, строят эталонный график зависимости по этим двум параметрам. Вычисляют параметр влажности пласта, а по фиксированному значению последнего из эталонного графика определяют смачиваемость пород [1] Однако указанный способ предназначен для определения лишь интегральной смачиваемости пород пластовыми флюидами. Наиболее близким к предлагаемому способу является способ определения смачиваемости пород-коллекторов, согласно которому производят отбор образца из исследуемого пласта, экстрагируют его, высушивают, измеряют проницаемость образца, насыщают его минерализованной водой, погружают образец в керосин, центрифугируют его при постоянном режиме 7000 об/мин в течение 2-х ч; далее этот образец помещают в минерализованную воду, снова центрифугируют при этом же режиме, определяют при этом капиллярное давление впитывания, строят кривую зависимости капиллярного давления впитывания динамического порового пространства от водонасыщенности (фиг. 1, кривая "а"). Далее этот же образец погружают в керосин, центрифугируют, определяют при этом капиллярное давление дренирования, строят кривую зависимости капиллярного давления дренирования динамического порового пространства от водонасыщенности (фиг. 1, кривая "б"), а параметр смачиваемости (W) определяют по формуле: W lq A1/A2 где: A1 площадь между осью водонасыщенности и кривой капиллярного давления дренирования; A2 площадь между осью водонасыщенности и кривой капиллярного давления впитывания [2] Однако известный способ позволяет лишь интегральную смачиваемость пород, т.е. для всего образца. Целью настоящего изобретения является обеспечение возможности определения дифференциального параметра смачиваемости для конкретных значений радиусов пор или их диапазона. Поставленная цель достигается тем, что в известном способе определения параметра смачиваемости поровых каналов пород-коллекторов, согласно которому производят отбор образца из исследуемого пласта, экстрагируют его, высушивают, измеряют проницаемость образца, насыщают его минерализованной водой, погружают образец последовательно в керосин, а затем в минерализованную воду и центрифугируют его после каждого погружения, определяют зависимость капиллярного давления впитывания и капиллярного давления дренирования порового пространства от водонасыщенности образца и по полученным данным судят о смачиваемости, новым является то, что центрифугирование образца проводят при различных режимах вращения центрифуги до получения образца с остаточной водо- и нефтенасыщенностью, при этом, после центрифугирования образца, помещенного в керосин, определяют зависимость капиллярного давления дренирования эффективного порового пространства образца от вонасыщенности, а после центрифугирования образца, помещенного в минерализованную воду, определяют зависимость капиллярного давления впитывания динамического порового пространства образца от водонасыщенности в диапазоне от Kов до 1 Kон, где Kов коэффициент водонасыщенности, Kон - коэффициент остаточной нефтенасыщенности, далее по полученным зависимостям строят нормированные дифференциальные кривые зависимости частоты встречаемости радиусов поровых каналов от их размера для эффективного и динамического порового пространства, а параметр смачиваемости определяют по формуле:
Fэ (r) нормированная дифференциальная частота встречаемости радиусов поровых каналов эффективного порового пространства;


Для исследования был выбран образец N 333 скважины 25 Мазунинского месторождения. Образец был отобран из водонасыщенной части башкирских отложений. Исследования пористости (Kп) и проницаемости (Kпр.ч.) дали соответственно следующие результаты: K 0,111 д.ед и K 0,024 мкм. Указанный образец экстрагировали, высушивали, насыщали 4-х нормальным растворам хлорида натрия, погружали в керосин и центрифугировали при различных режимах вращения ротора центрифуги от 100 до 11000 об/мин, при этом регистрируя количество вытесненной воды. Далее по формуле:

где Pк капиллярное давление;


N частота вращения ротора;
R расстояние от оси вращения до внутреннего торца образца;
H высота образца;
рассчитывали капиллярное давление (Pк) дренирования эффективного порового пространства, а по формуле
K 1 Vв/Vh,
где Vв объем жидкости, вышедшей из образца;
Vн объем открытых пор,
рассчитывали коэффициент водонасыщенности K. По полученным данным строили кривую зависимости Pк от Kв, представленную на фиг. 2, кривая "а". Далее этот образец, насыщенный керосином с остаточной водонасыщенностью, помешали в 4-х нормальный раствор хлорида натрия, центрифугировали и при различных режимах вращения ротора от 100 до 11000 об/мин регистрировали количество вытесненного керосина. Затем по вышеприведенным формулам определяли капиллярное давление впитывания динамического порового пространства и коэффициент нефтенасыщенности. Затем строили кривую зависимости капиллярного давления впитывания от водонасыщенности в диапазоне от Kов до 1 - Kон (кривая "б" фиг. 2), (Kов остаточная водонасыщенность, Kон остаточная нефтенасыщенность). Далее строили нормированную дифференциальную кривую зависимости частоты встречаемости радиусов поровых каналов от их размера для эффективного порового пространства. С этой целью для каждого интервала значений Pк определяли интервал радиусов поровых каналов:

при этом:
ri = 2



где

Pк капиллярное давление;

Затем соответственно для каждого интервала значений Pк определяли количество выделившейся воды:

где Kв коэффициент водонасыщенности образца. Рассчитывали дифференциальную ненормированную частоту встречаемости радиусов поровых каналов по доле выделившейся воды на единицу радиуса в каждом интервале

Fi =


Определяли сумму всех частот





где r1 минимальный радиус выбранного диапазона радиусов поровых каналов;
r2 максимальный радиус выбранного диапазона радиусов поровых каналов;
Fд (r) нормированная дифференциальная частота встречаемости радиусов поровых каналов динамического порового пространства;
Fэ (r) нормированная дифференциальная частота встречаемости радиусов поровых каналов эффективного порового пространства;


Формула изобретения

где r1 минимальный радиус выбранного диапазона радиусов поровых каналов;
r2 максимальный радиус выбранного диапазона радиусов поровых каналов;
Fд(r) - нормированная дифференциальная частота встречаемости радиусов поровых каналов динамического порового пространства;
Fэ(r) - нормированная дифференциальная частота встречаемости радиусов поровых каналов эффективного порового пространства;


РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3