Оптоэлектронный способ контроля формы объекта
Использование: в приборостроении и точном машиностроении для контроля формы объекта оптическим методом. Сущность изобретения: освещают объект и передают отраженное от объекта излучение через, соответственно, передающий и приемный световоды, торцы которых соединены между собой посредством оптически прозрачного тела, поверхность которого подобна поверхности контролируемого объекта и обратна ей, а для освещения объекта по выбранным направлениям размещают по каждому из этих направлений спектральные светофильтры, спектральные диапазоны пропускания которых отличаются друг от друга. Контроль формы объекта осуществляют, используя излучение, оптическая частота которого соответствует пропусканию соответствующего спектрального светофильтра. При этом спектральные светофильтры могут быть размещены на поверхности оптически прозрачного тела. 3 з.п. ф-лы, 1 ил.
Изобретение относится к измерительной технике и может быть использовано в приборостроении и точном машиностроении для контроля формы объектов оптическим методом.
Целью изобретения является изыскание способа, позволяющего упростить средства контроля формы объектов и расширить их функциональные возможности. Известен способ измерения формы объекта, при котором объект освещают набором лучей, отраженные от объекта лучи принимают в контрольных точках промежуточного тела, расположенных эквидистантно образцовой поверхности, отклонение формы контролируемого объекта определяют по изменению сигналов от отраженных световых лучей по сравнению с образцовыми сигналами (прототип). Способ основан на многоточечном принципе измерения, при котором информация о форме объекта сначала дискретно собирается в контрольных точках, а затем контролируется для участков между контрольными точками. Таким образом, одним из основных недостатков известного способа является отсутствие достоверной измерительной информации о форме объекта между контрольными точками. В устройстве, реализующем этот способ, поверхность промежуточного тела, эквидистантная образцовой поверхности, не служит непосредственно измерительным элементом, а лишь обеспечивает эквидистантность (т.е. равноудаленность) торцев приемных световодов от поверхности тела. Этот недостаток не позволяет в ряде случаев эффективно использовать устройства, реализующие известный способ, например, для контроля формы глубоких отверстий диаметром до 1 мм, микросопел и т.п. Другим недостатком известного способа является то, что его реализация требует значительного количества аппаратуры: N+1 источников излучения, передающих и приемных световодов, фотоприемников, N цепей, каждая из которых содержит усилитель, первый и второй элементы памяти, дифференциальный усилитель и др. (где N количество контрольных точек). Основной задачей, на решение которой направлено заявляемое изобретение, является устранение указанных недостатков и расширение функциональных возможностей средств контроля формы объектов. Сущность способа заключается в контроле формы объекта по нескольким заданным направлениям с использованием для контроля по каждому направлению излучения только с выбранной для этого направления оптической частотой. При этом передающий и приемный световоды соединяют посредством оптически прозрачного тела, поверхность которого подобна поверхности контролируемого объекта и обратна ей. Таким образом создается "пространственный оптический калибр", позволяющий получать информацию по нескольким направлениям. Предлагаемый способ позволяет осуществлять переход от контроля формы объекта по одному направлению к контролю формы по другому направлению путем изменения только оптической частоты излучения в сочетании с использованием спектральных светофильтров, избирательно пропускающих излучение с определенной частотой. На чертеже показана функциональная схема осуществления оптоэлектронного способа контроля формы объекта. Для контроля формы объекта по какому-либо одному направлению, например направлению B, от источника 1 подают излучение с требуемой оптической частотой
















Формула изобретения
1. Оптоэлектронный способ контроля формы объекта, при котором освещают объект по выбранным направлениям и передают отраженное от объекта излучение на фотоприемник, а по параметрам электрического сигнала на выходе фотоприемника судят о соответствии формы контролируемого объекта форме эталона по каждому из выбранных направлений, отличающийся тем, что освещают объект и передают отраженное от объекта излучение через соответственно передающий и приемный световоды, торцы которых, обращенные к контролируемому объекту, соединяют между собой посредством оптически прозрачного тела, поверхность которого подобна поверхности контролируемого объекта и обратна ей, обеспечивают освещение объекта по выбранным направлениям путем размещения по каждому из этих направлений спектральных светофильтров, спектральные диапазоны пропускания которых отличаются друг от друга, и контролируют форму объекта по каждому из направлений, используя излучение, оптическая частота которого соответствует пропусканию соответствующего спектрального светофильтра. 2. Способ по п.1, отличающийся тем, что спектральные светофильтры размещают на поверхности оптически прозрачного тела. 3. Способ по п.1 или 2, отличающийся тем, что значения используемых оптических частот излучения выбирают в соответствии с диапазоном спектральной чувствительности фотоприемника. 4. Способ по п.1, отличающийся тем, что при оптическом гетеродинном методе приема формируют дополнительный оптический канал передачи излучения от источника к фотоприемнику, минуя измерительный оптический канал, осуществляют в дополнительном оптическом канале сдвиг оптической частоты излучения на фиксированное значение и обеспечивают при приеме наложение излучения со смещенной оптической частотой и излучения, несущего измерительную информацию, причем для всех используемых оптических частот обеспечивают получение одной и той же разностной частоты на выходе фотоприемника.РИСУНКИ
Рисунок 1