Газоанализатор
Изобретение относится к технологическому контролю состава и измерения количества примесей в газовых смесях. Сущность изобретения: устройство содержит источник света 1, монохроматор 4, фотоприемник 5, усилитель 6, синхронный детектор 7, опорный вход которого соединен с тактовым генератором 9, блок обработки и индикации 8, при этом введены синтезатор частот 11, вход установки частоты которого соединен с блоком управления 10, и модулируемый усилитель мощности 12, управляющий вход которого соединен с выходом тактового генератора 9, а выход - с управляющим входом монохроматора 4, который выполнен акустооптическим, а между источником света 1, выполненным широкополосным и акустооптическим монохроматором введены светоделитель 2 и уголковый отражатель 3, оптически связанный через светоделитель 2 с источником света 1 и акустооптическим монохроматором 4, при этом усилитель 6, вход управления которого соединен с блоком управления 10, выполнен с регулируемым коэффициентом передачи, причем на входе акустооптического монохроматора может быть установлен корректор спектра, а между светоделителем и уголковым отражателем может быть помещен трансформирующий объектив. 2 з. п. ф-лы, 1 ил.
Изобретение относится к технологическому контролю состава и измерению количества примесей в газовых смесях.
Известны различные виды газоанализаторов, в частности, газоанализаторы спектрофотометрические на решетках и на сменных светофильтрах, а также на базе Фурье-спектрометров. Газоанализаторы на сменных светофильтрах отличаются простотой и дешевизной, однако для каждого анализируемого газа необходим свой набор светофильтров, т.е. ограничены возможности по исследованию множественности газов, т.к. необходимо иметь большое число светофильтров, а это в свою очередь уменьшает оперативность исследования газов и ограничивает возможности в случае регистрации смесей. Решетчатые и призменные газоанализаторы позволяют анализировать различные газовые смеси, но при этом непрерывное механическое сканирование решетки или призмы по спектру приводит к тому, что при анализе вынужденно измеряется весь участок спектра, который зачастую содержит большой массив малоинформативных точек. Кроме того, время измерения у таких сканирующих спектрометров недопустимо велико для использования их в качестве газоанализаторов, измеряющих на открытых трассах, где турбулентность атмосферы и быстро меняющиеся условия освещения приводят к существенным искажениям снимаемых таким образом спектров. В этих случаях приходится ограничивать регистрируемый участок спектра узким диапазоном, что сужает возможности одновременной регистрации нескольких газов. Это же относится и к газоанализаторам на основе Фурье-спектрометров. Известны также газоанализаторы, использующие модуляционный метод измерения, которые обеспечивают повышенную чувствительность [1, 2, 3, 4] Наиболее близким аналогом, выбранным в качестве прототипа из указанных газоанализаторов, использующих модуляционный метод измерения, является газоанализатор, описанный в [4] Этот газоанализатор содержит последовательно соединенные модулируемый лазерный источник света, монохроматор, кювету для газа, фотоприемник, усилитель с преобразованием частоты, синхронный детектор и блок управления, а также генератор тактовых импульсов, который подключен к модулируемому лазерному источнику и синхронному детектору. Недостатком данного анализатора является его относительная узкополосность, что ограничивает количество исследуемых газов. Технический результат данного изобретения заключается в расширении возможностей по анализу газовых смесей, что, в частности, позволяет анализировать большое количество примесей одним прибором, в частности, одновременно. Указанный технический результат достигается за счет того, что в газовом анализаторе, содержащем источник света, монохроматор, фотоприемник, к выходу которого через усилитель подключен синхронный детектор, причем к опорному входу синхронного детектора подключен генератор тактовых импульсов, блок обработки и индикации измеренных параметров, подключенный к выходу синхронного детектора, и блок управления, соединенный с управляющими входами генератора тактовых импульсов и блока обработки и индикации измеренных параметров, источник света выполнен широкополосным, монохроматор выполнен акустооптическим, усилитель выполнен с регулируемым коэффициентом передачи, при этом между источником света и монохроматором установлен светоделитель, введены последовательно соединенные синтезатор частот и модулируемый усилитель мощности, выход которого подключен к управляющему входу акустооптического монохроматора, уголковый отражатель, оптически связанный со светоделителем, управляющие входы синтезатора частот и модулируемого усилителя мощности соединены соответственно с выходом блока управления и генератора тактовой частоты. На чертеже представлена блок-схема газоанализатора, где показаны: 1 - источник широкополосного света, в качестве которого может быть использована, например, ксеноновая лампа типа ДКСШ с оптическими элементами, формирующими параллельный пучок света; 2 светоделитель, в качестве которого может использоваться, например, полупрозрачное зеркало; 3 уголковый отражатель; 4 акустооптический монохроматор; 5 фотоприемник; 6 усилитель с регулируемым коэффициентом передачи; 7 синхронный детектор; 8 блок обработки и индикации; 9 генератор тактовых импульсов; 10 блок управления на основе микропроцессора либо персонального компьютера; 11 синтезатор частот; 12 модулируемый усилитель мощности; 13 кювета с анализируемым газом, показанная пунктиром, поскольку при определенных условиях она может отсутствовать; 14 корректор спектра, в качестве которого может использоваться, например, светофильтр; 15 трансформирующий объектив. Работает газоанализатор следующим образом. Пучок света, излучаемый источником света 1, проходит через светоделитель 2, кювету с анализируемым газом 13 и падает на уголковый отражатель 3, затем возвращается через кювету с анализируемым газом 13 на светоделитель 2, откуда отражается на корректор спектра 14 и попадает на акустооптический монохроматор 4, на который также поступает радиоимпульс, образованный из частоты, получаемой от синтезатора частот 11, модулированной тактовым генератором 9 в модулируемом усилителе мощности 12. Акустооптический монохроматор 4 пропускает на фотоприемник 5 поток излучения в узкой спектральной полосе, соответствующей длине волны











L длина оптического пути потока излучения внутри кюветы;
C(




где элементы матрицы А определяются константами поглощения газов

Формула изобретения
РИСУНКИ
Рисунок 1