Способ определения массы штучных изделий при пневмотранспортировании и устройство для его осуществления
Использование: контрольно-измерительное оборудование автоматических линий упаковочного или расфасовочного назначения. Использование: при определении массы штучных изделий создают под транспортируемым изделием воздушную подушку, затем бесконтактно оказывают воздействие определенной величины на боковую поверхность первоначально неподвижного изделия в направлении последовательного поступательного движения его, измеряют время прохождения изделием контрольного участка, по которому определяют массу изделия. 2 с.п. ф-лы, 1 ил.
Изобретение относится к весоизмерительной технике и может быть использовано в пищевой промышленности для контроля веса упаковок или изделий, имеющих форму параллелепипеда, перемещаемых при помощи пневмотранспортера.
Существует способ бесконтактного контроля массы движущихся изделий путем сообщения колебаний участку пневмоконвейера с размещенным на этом участке изделием, причем с целью повышения точности контроля участку пневмоконвейера при помощи вибратора сообщают гармонические колебания в направлении нормали к его несущей поверхности с частотой, соответствующей частоте свободных колебаний номинального по массе изделия на воздушной прослойке участка пневмоконвейера, а о величине массы изделия судят по амплитуде вынужденных колебаний изделия [1] Следует отметить, что значительное влияние на точность измерения оказывает масса участка пневмоконвейера и нестабильность параметров колебаний вибратора. Наиболее близким предлагаемому способу, по сущности изобретения, является способ определения массы изделия при пневмотранспортировании и устройство его реализации [2] при котором создают под транспортируемым изделием воздушную подушку, кратковременным импульсом давления вызывают колебания изделия и определяют массу изделия по периоду его свободных колебаний. Устройство для определения массы транспортируемого изделия содержит пневмотранспортер с камерой питания,узлы возбуждения и измерения клебаний, причем узел возбуждения размещен в камере питания и выполнен в виде источника импульсного напряжения, подключенного к двум электродам, установленным между собой с искровым зазором, а узел измерения колебаний выполнен в виде двух фотодатчиков поперечных перемещений и измерителя временных промежутков. В основном погрешность определения массы для данного способа следствие погрешности определения периода колебаний, а точное измерение периода затрудняется при увеличении массы изделия, приходящейся на единицу площади опорной поверхности, из-за уменьшения частоты и амплитуды свободных колебаний. Кроме того, определение значений параметров колебательного движения изделия усложняется из-за малой толщины воздушной подушки. Поэтому указанный способ успешно применяется при контроле массы плоских изделий и плохо применим для определения массы объемных изделий, например, упаковок, имеющих форму параллелепипеда. Технической задачей является повышение точности бесконтактного измерения массы штучных изделий, близких по форме к параллелепипеду. Сущность изобретения состоит в том, что создают под транспортируемым изделием воздушную подушку, затем бесконтактно оказывают воздействие определенной величины на боковую поверхность первоначально неподвижного изделия в направлении последующего поступательного движения его, измеряют время прохождения изделием контрольного участка и определяют массу изделия по формуле: mи=К


где mи масса изделия;
x текущая координата;
t текущее время;
fд величина силы, действующей вдоль оси координат;
fсв величина силы сопротивления воздуха движению изделия (fсв< fд(Х), поэтому влиянием fсв в дальнейшем будем пренебрегать). Интегрируя по времени выражение (1), с учетом того что в первоначальный момент времени изделие неподвижно, получим уравнение для скорости поступательного движения изделия:

2



mи=K


где mэ масса эталонного изделия;
tэ время прохождения эталонным изделием контрольного участка. Устройство, позволяющее реализовать предлагаемый способ, представлено на схеме, изображенной на чертеже. Устройство представляет собой прямой участок пневмотранспортера (1) с камерой питания (2), два установленных над камерой питания фотодатчика перемещений изделия (3) и (4), соединенных с измерителем временных промежутков (5). Вдоль пневмотранспортера и выше уровня изделия (6) расположен пневматический сопловой элемент (7), представляющий собой пневмокамеру питания (8), в нижней части которой установлены сопла (9), наклоненные в направлении движения изделия. Вычислительный блок (10) связан с измерителем временных промежутков. Устройство работает следующим образом. Изделие помещают на воздушную подушку, создающуюся между нижней поверхностью изделия и пневмотранспортером, в зону действия первого фотодатчика (3). Воздушные струи, истекающие из сопел (9) пневматического соплового элемента, воздействуют на боковую поверхность изделия. Составляющая этого воздействия, направленная вдоль пневмотранспортера, заставляет изделие (6) двигаться с ускорением в зону действия второго фотодатчика (4). Измеритель временных промежутков (5) определяет время движения изделия по контрольному участку (между первым и вторым фотодатчиками). Вычислительный блок (10), используя информацию, поступающую с измерителя временных промежутков, рассчитывает массу изделия по формуле (4). Экспериментальный коэффициент К определяется в результате предварительного тарирования устройства с использованием изделия, масса которого известна.
Формула изобретения
mи k

где mи масса контролируемого изделия;
tи время прохождения изделием контролируемого участка;
k коэффициент, зависящий от геометрических параметров изделия и определяемый при настройке, для однотипных изделий определяемый из соотношения

где mэ масса эталонного изделия;
tэ время прохождения эталонным изделием контрольного участка. 2. Устройство для определения массы штучных изделий, включающее пневмотранспортер с камерой питания, два установленных над камерой питания фотодатчика перемещений изделия, соединенных с измерителем временных промежутков, отличающееся тем, что вдоль пневмотранспортера над его камерой питания и выше уровня изделия установлены пневматический сопловой элемент, представляющий собой пневмокамеру питания, в нижней части которой выполнены сопла, наклоненные в направлении движения изделия, и связанный с измерителем временных промежутков вычислительный блок, при этом фотодатчики перемещений изделия расположены вдоль пневмотранспортера под сопловым элементом.
РИСУНКИ
Рисунок 1