Использование: в лазерной технике. Сущность изобретения: для решения технической задачи, связанной с исключением условий, приводящих к засорению генерируемого потока синглетного кислорода потенциальными тушителями компонентов активной среды лазера, и с поиском условий, обеспечивающих режим работы электрохимической системы, соответствующий стабильному состоянию электролита, в способе получения синглетного кислорода, включающем абсорбцию газообразного кислорода электролитом, электрохимическое восстановление растворенного кислорода до супероксида O-2 и окисление последнего до синглетного кислорода O2(1
g), выводимого затем в приемник, в качестве электролита используют дистиллированную воду, окисление супероксида O-2 производят электрохимическим путем на аноде, а в качестве приемника используют газовую фазу над поверхностью электролита, противоположной поверхности, абсорбирующей газообразный кислород.
Изобретение относится к квантовой электронике, преимущественно к химическим лазерам непрерывного действия, и может быть использовано при создании иодно-кислородного лазера многоцелевого назначения для получения синглетного кислорода энергоносителя лазеров этого типа.
В настоящее время известно, что в стабильном (триплетном) состоянии на внешней неполностью заполненной
g-орбитали молекулы кислорода, если рассматривать электронную конфигурацию этой молекулы в терминах модели линейной комбинации атомных орбиталей, находятся два антисвязывающих электрона с параллельными спинами. По этой причине взаимодействие между этими электронами имеет характер отталкивания, достигающего минимальной величины, если электроны находятся во взаимно перпендикулярных плоскостях. Всего же на молекулярной
g-орбитали согласно принципу Паули может находиться не более четырех электронов, отличающихся друг от друга значением хотя бы одного из квантовых чисел m
e или m
s [1] Известны также подтвержденные экспериментально теоретические исследования, согласно которым ближайшие возбужденные (синглетные) состояния молекулы кислорода возникают в результате образования на внешней неполностью заполненной
g-орбитали молекулы неподеленной пары антисвязывающих электронов, т.е. пары электронов с антипараллельными спинами. По этой причине взаимодействие между этими электронами имеет характер притягивания, достигающего максимальной величины, если электроны находятся в одной плоскости.
Метастабильность синглетных состояний молекулы кислорода объясняют строгим запретом перехода в основное (стабильное) состояние посредством дипольного излучения. Иными словами переход из синглетного состояния в триплетное посредством дипольного излучения требует при электронном переходе конверсии спина возбужденного электрона, а вероятность этого процесса чрезвычайно мала.
Возбуждение молекулы кислорода в естественных условиях объясняется процедурой обмена электронами между молекулами метастабильного комплекса [
3O
2.
3O
2] в результате поглощения этим комплексом одного фотона соответствующей энергии. При тушении возбужденного состояния обмен электронами между молекулами возбужденного метастабильного комплекса [
1O
2.
1O
2] сопровождается излучением одного фотона [2] Нетрудно видеть, что обмен электронами между молекулами метастабильного комплекса является процессом статистического характера и по этой причине мало пригоден в качестве механизма практического способа получения синглетного кислорода. Для практических целей гораздо привлекательнее механизм, в основе которого лежит обмен электронами, происходящий посредством переноса молекулой кислорода электрона от донора к акцептору во время какого-либо восстановительно-окислительного процесса.
Наиболее близким по технической сущности к предлагаемому способу получения синглетного кислорода является способ, включающий абсорбцию газообразного кислорода жидким раствором, содержащим молекулы ферроцена (C
5H
5)
2Fe, электрохимическое восстановление растворенного кислорода до супероксида O
-2, электрохимическое окисление молекул ферроцена до катионов [(C
5H
5)
2Fe]
+ и окисление последними супероксида O
-2 до синглетного кислорода O
2(
1
g), поглощаемого затем химической ловушкой [3] К существенным недостаткам известного способа следует отнести хорошую растворимость ферроцена только в органических растворителях. В известном способе в качестве жидкого раствора был использован раствор ферроцена в ацетонитриле CH
3CN, что при выводе генерируемого потока синглетного кислорода в газовую фазу неизбежно приведет к засорению последующих трактов лазера выходящими из жидкого раствора в процессе перехода подобной гетерогенной системы к равновесному состоянию частицами, являющимися потенциальными тушителями компонентов активной среды лазера. Подобное засорение снижает коэффициент полезного действия всей системы.
К недостаткам известного способа следует также отнести недостаточную стабильность жидкого раствора, так как входящий в его состав растворитель - ацетонитрил, если судить по положительному значению стандартной мольной энергии Гиббса

G

= 100,4 кДж/моль, соответствующей образованию этого вещества, должен понижать упомянутую характеристику жидкого раствора. К тому же ацетонитрил токсичен; предполагается, что предельно допустимая концентрация ацетонитрила в воздухе составляет 0,002% Кроме того, наличие в системе органических реагентов в контакте с кислородом должно существенно повысить взрыво- и пожароопасность системы.
При разработке предлагаемого способа решалась задача, связанная с исключением условий, приводящих к засорению генерируемого потока синглетного кислорода частицами потенциальными тушителями компонентов активной среды лазера, и поиском условий, обеспечивающих стабильное состояние электролита в процессе работы электрохимической системы.
Сущность изобретения заключается в том, что в способе получения синглетного кислорода, включающем абсорбцию газообразного кислорода электролитом, электрохимическое восстановление растворенного кислорода до супероксида O
-2 и окисление последнего до синглетного кислорода O
2(
1
g), выводимого затем в приемник, в качестве электролита используют дистиллированную воду, окисление супероксида O
-2 производят электрохимическим путем на аноде, а в качестве приемника используют газовую фазу над поверхностью электролита, противоположной поверхности, абсорбирующей газообразный кислород.
Действительно внешняя молекулярная
g-орбиталь супероксида O
-2 содержит три антисвязывающих электрона, два из которых образуют неподеленную пару и по этой причине более прочно связаны с остальной частью молекулы, чем третий неспаренный электрон. Прочность связи этого последнего электрона определяется сродством молекулы кислорода к электрону: O
-2+0,44 эВ _

O
2+e
-. Если от супероксида O
2- оторвать каким-либо способом, например путем электрохимического окисления на аноде, этот слабосвязанный электрон, то образовавшаяся после этого молекула кислорода будет находиться в синглетном, т. е. возбужденном, состоянии, так как суммарный спин неподеленной пары электронов равен нулю.
Величина сродства молекулы кислорода к электрону свидетельствует о том, что равновесный потенциал окислительной электродной полуреакции O
-2 _

O
2+e
- 

= -0,44 В примерно в 2,7 раза ниже равновесного потенциала окислительно-восстановительной электродной полуреакции
O
2+4H
++4e
- 
2H
2O


= +1,229 В,
что обеспечит режим работы электрохимической системы в области, соответствующей стабильному состоянию электролита.
Технический результат, получаемый предложенной совокупностью признаков и выражающийся в генерации потока синглетного кислорода O
2(
1
g) без макроскопических количеств примесей потенциальных тушителей компонентов активной среды лазера (за исключением паров воды), а также в обеспечении возможности работы электрохимической системы в режиме, соответствующем стабильному состоянию электролита, не достигнут ни одним из выявленных в процессе анализа современного уровня техники известных способов получения синглетного кислорода для химических иодно-кислородных лазеров непрерывного действия.
Предлагаемый способ получения синглетного кислорода реализуют следующим образом.
К поверхности электролита дистиллированной воды со стороны размещения катода подводят газообразный кислород, который после абсорбции электролитом восстанавливают на катоде до супероксида O
-2. Эти анионы кислорода под действием электрического поля перемещаются к аноду, где их окисляют до синглетного кислорода O
2(
1
g). Синглетный кислород посредством концентрационной диффузии выходит в газовую фазу через поверхность электролита, противоположную поверхности, абсорбирующей газообразный кислород.
Использование предлагаемого способа получения синглетного кислорода позволит создать химический иодно-кислородный лазер непрерывного действия многоцелевого назначения в наиболее экономичном на данный момент исполнении с точки зрения технологии изготовления, эксплуатации и обеспечения экологической чистоты.
Формула изобретения
Способ получения синглетного кислорода преимущественно для химического иодно-кислородного лазера непрерывного действия, включающий абсорбцию газообразного кислорода электролитом, электрохимическое восстановление растворенного кислорода до супероксида O
-2 и окисление последнего до синглетного кислорода O
2(
1
д), выводимого затем в приемник, отличающийся тем, что в качестве электролита используют дистиллированную воду, окисление супероксида O
-2 производят электрохимическим путем на аноде, а в качестве приемника используют газовую фазу над поверхностью электролита противоположной поверхности, абсорбирующей газообразный кислород.