Использование: в лазерной технике и нелинейной оптике при изготовлении генераторов второй гармоники лазерного излучения на основе монокристаллов иодата лития (
- LiIO3), а также в устройствах электроники и оптики. Сущность изобретения: обработку монокристаллов
- LiIO3 проводят путем
-облучения до поглощенной дозы 20-25 кГр с последующим облучением светом интенсивностью 5 мВт/см2 в течение 150 мин в диапазоне длин волн 270-700 нм. Изобретение позволяет увеличить коэффициент преобразования (
) лазерного излучения в оптических элементах из монокристаллов
- LiIO3 и сократить длительность стадии их фотоотбеливания. 1 з.п.ф-лы, 1 табл.
Изобретение относится к способам обработки элементов лазерной техники и нелинейной оптики и может быть использовано при изготовлении генераторов второй гармоники лазерного излучения на основе монокристаллов
- LiIO3, а также в устройствах акустоэлектроники и акустооптики.
Наиболее близким к предлагаемому является способ обработки монокристаллов иодата лития (

- LiIO
3), заключающийся в их

-облучении до поглощенной дозы 180-720 Гр и последующем облучении монокристаллов ультрафиолетовым светом (фотоотбеливание) в диапазоне длин волн 270 300 нм с интенсивностью 4 5 мВт/см
2 в течение 2,5 3 ч. Такая обработка монокристаллов a-LiIO
3 приводит к просветлению в УФ и видимом диапазонах спектра на всю глубину кристалла.
Однако они имеют недостаточно высокий коэффициент преобразования (

) излучения во вторую гармонику, т.к. получаемая величина

обусловлена только "залечиванием" структурных дефектов исходного монокристалла. Кроме того, использование для фотоотбеливания только УФ-области спектра требует большого времени облучения кристаллов светом после g-облучения.
Задачей изобретения является увеличение коэффициента преобразования, h, лазерного излучения во вторую гармонику в оптических элементах из монокристаллов a - LiIO
3 при одновременном сокращении длительности стадии фотоотбеливания.
Это позволит повысить качество генератора второй гармоники лазерного излучения и других элементов оптоэлектроники, изготавливаемых из данных монокристаллов.
Поставленная задача решается за счет того, что при обработке монокристаллов иодата лития путем

-облучения и последующего облучения светом в диапазоне длин волн выше 270 нм с интенсивностью 5 мВт/см
2 согласно изобретению g-облучение ведут до поглощенной дозы 20 -25 кГр и облучение светом проводят в течение 150 мин, а также облучение светом ведут в диапазоне длин волн 270 700 нм.
При g -облучении монокристаллов a - LiIO
3 до поглощенной дозы 20 25 кГр появляются радиационно-наведенные дефекты с концентрацией до 2

10
18 см
-3, локализованные вблизи структурных искажений (дислокации, границы блоков и т. п. ) кристаллической решетки кристалла. Последующее фотоотбеливание светом в спектральном диапазоне 270 700 нм в течение 150 мин вызывает трансформацию этих дефектов, в результате чего исчезают полосы наведенного поглощения в области 350 1200 нм. Стадия фотоотбеливания, в отличие от прототипа, является обязательным технологическим приемом для решения поставленной задачи изобретения. Расширение спектрального диапазона световой обработки до 700 нм позволяет эффективно отбеливать второй гармонике Nd
3+-лазеров, в результате чего время фотоотбеливания значительно сокращается.
В то же время трансформированные дефекты вызывают деформацию кристаллической решетки

- LiIO
3 вследствие чего увеличивается анизотропия исходного материала. В результате этого изменяется показатель преломления кристалла для световых пучков со взаимно перпендикулярной поляризацией, что приводит к повышению коэффициента нелинейной восприимчивости, являющегося важнейшей, с точки зрения эффективности генерации второй гармоники, характеристикой кристалла. Следствием указанного является значительное увеличение

(до 2 раз), что приводит к соответствующему повышению энергии второй гармоники при постоянных параметрах лазерного излучения основной частоты, при одновременном сокращении времени фотоотбеливания в 5 раз.
При поглощенной дозе g-облучения менее 20 кГр максимальное значение h достигается только у единичных образцов. При поглощенной дозе 20 кГр максимальное значение h достигается у 80% оптических элементов из a - LiIO
3.
Увеличение поглощенной дозы свыше 25 кГр неэффективно, так как не приводит к росту

. Расширение спектрального диапазона света, используемого для фотоотбеливания, свыше 700 нм также нецелесообразно, так как не приводит к дальнейшему снижению времени стадии световой обработки.
Способ осуществляется следующим образом: оптический элемент из монокристалла a - LiIO
3 помещают в камеру установки PXM-

-20 с изотопом
60Со и облучают

-квантами до поглощенной дозы 20 25 кГр. После этого оптический элемент подвергают фотообесцвечиванию светом в диапазоне длин волн 270 700 нм от лампы ДКСэЛ 1000 с интенсивностью 5 мВт/см
2 в течение 150 мин.
Контроль качества обработки проводят измерением энергий основной частоты и второй гармоники лазерного излучения с l = 1,06 мкм при плотности мощности 1,5 ГВт/см
2.
Пример осуществления способа.
а) Оптические элементы, изготовленные из монокристалла

- LiIO
3 выращенного методом изотермического испарения при температуре 315 К (pH 2,5), для использования в качестве генератора второй гармоники лазерного излучения

= 1,06 мкм, в размерами 10х10х20 мм облучают в камере установки PXM-

-20 излучением
60Со (поглощенная доза 20 кГр). После облучения кристалл отбеливают светом лампы ДКСэЛ 1000 в диапазоне спектра 270 700 нм с интенсивностью 5 мВт/см
2 в течение 150 мин. Обработанный элемент устанавливают в положение углового синхронизма основной частоты и частоты второй гармоники лазерного излучения с

= 1,06 мкм и определяют

при плотности мощности лазера 1,5 ГВт/см
2. При данной поглощенной дозе и режиме фотоотбеливания максимальное значение h достигается для 80% исследованных элементов.
б) Исходные параметры оптических элементов, используемой аппаратуры и режим фотоотбеливания такие же, как в примере а). Поглощенная доза g - излечения 25 кГр. Максимальное значение h достигается у 100% элементов.
В таблице приведены результаты определения h при указанных параметрах лазерного излучения на оптических элементах из a - LiIO
3 обработанных по технологическим приемам, указанным в примерах, но при различных дозах

-излучения, спектральных диапазонах и времени фотоотбеливания.
Использование изобретения позволит обрабатывать монокристаллы a - LiIO
3 до стадии изготовления оптических элементов.
Предлагаемый способ обработки позволяет увеличить

для генераторов второй гармоники из a - LiIO
3 в 2 раза при снижении времени фотоотбеливания в 5 раз по сравнению с известным способом обработки [1]
Формула изобретения
1. Способ обработки монокристаллов йодата лития, включающий гамма-облучение и последующее облучение светом в диапазоне длин волн более 270 нм интенсивностью 5 мВт/см
2, отличающийся тем, что гамма-облучение ведут до поглощенной дозы 20 25 кГр, а облучение светом проводят в течение 150 мин.
2. Способ по п. 1, отличающийся тем, что облучение светом ведут в диапазоне длин волн 270 700 нм.
РИСУНКИ
Рисунок 1