Способ создания активных движущих сил в изменяемых механических системах (его варианты)
Использование: двигательные системы, средства создания активных движущихся сил в двигателях и движителях, унифицированно применимых на различных поверхностях и в различных средах. Сущность изобретения: в изменяемых механических системах к центрам масс каждого тела прикладывают вращающие внешние окружные силы, циклически изменяют эти силы по величине с частотой вращения тел системы по закону гармонических колебаний асимметрично оси результирующей силы, а возникающие в системе моменты сопротивления вращению тел системы задают из условия обеспечения постоянства угловой скорости вращения центров масс тел системы. В другом варианте одновременно с циклическими изменениями внешних окружных сил наблюдаются циклические изменения угловой скорости и знакопеременного углового ускорения по закону гармонических колебаний - симметрично относительно оси результирующей силы. Одновременно с циклическими изменениями внешних окружных сил по синусоидальному закону асимметрично оси результирующей силы, а угловых скоростей и ускорений центров масс тел системы по синусоидальному закону симметрично указанной оси могут производиться циклические изменения массы каждого тела системы с частотой вращения их по синусоидальному закону - симметрично указанной оси с обеспечением постоянства массы всей системы. В результате в обоих вариантах получают активную движущую силу, величину и направление которой определяют как геометрическую сумму циклически переменных проекций всех сил, действующих в системе, на заданную ось равнодействующей этих сил. Использование создаваемой в системе активной движущей силы в различных двигателях и движителях для различных сред и поверхностей обеспечивает повышение КПД и универсальности двигательных систем. 2 с. и 1 з.п. ф-лы, 10 ил.
Изобретение относится к области двигательных систем, в том числе реактивных, а именно к способам и устройствам создания активных движущихся сил (АДС) в изменяемых механических системах, моделирующих рабочие процессы в силовых установках различных транспортных средств, унифицированно применимых на различных поверхностях и в различных средах перемещения, включая среду с бесконечно малой плотностью.
Известны способы перемещения центров масс транспортных средств, рассматриваемых как неизменяемые механические системы или как свободные твердые тела, от действующих на них со стороны других тел внешних распределенных или эквивалентных им сосредоточенных сил, а также плоских или пространственных, сходящихся или параллельных систем активных движущихся сил, равнодействующие которых, начав действовать на покоящееся тело, могут привести его в движение вдоль результирующей линии действия. При этом геометрическая сумма векторов внешних сил, действующих на систему, равна производной по времени от количества движения систем (Тарг С.М. Краткий курс теоретической механики. М. 1986, с.5-10, 180, 202). Способы перемещения неизменяемых систем подчинены закону сохранения движения центров масс систем, основному закону динамики и реализуются в поступательных перемещениях воздушных шаров или парусных судов в результате действия на них распределенных сил со стороны подвижных потоков окружающей среды или в движении различных тел по горизонтальной плоскости от действия на них сосредоточенных сил, например сил трения со стороны поверхностей перемещения (там же, с.182, 276, 277). Недостатки способов перемещения центров масс неизменяемых механических систем заключаются в ограниченных возможностях их применения, обусловленных абсолютной зависимостью от модуля внешних сил, направления действия и точек приложения равнодействующей векторов активных движущихся сил, возникающих вне рассматриваемых систем. Известны способы создания активных движущихся сил в пределах транспортных средств, а именно их силовыми установками, рассматриваемыми как изменяемые механические системы, состоящие из множества тел и материальных точек, способных изменять взаимоположение относительно друг друга, присоединяться к системам или отделяться от них под действием внешних и внутренних сил (там же, с.282-294). Способы заключаются в приложении к центрам масс изменяемых систем активных движущихся сил, являющихся реакциями внешних сил, возникающих в результате взаимодействия силовых установок с окружающей средой, в которой транспортные средства перемещаются, а также в результате отбрасывания части тел, входящих в состав изменяемых систем. При этом направление главного вектора количества движения центра массы, изменяемой механической системой, как геометрической суммы векторов количеств движений тел системы совпадает с положительным направлением вектора активной движущей силы, создаваемой в системе, а производная по времени от главного вектора количества движения центра массы системы равна модулю вектора активной движущей силы, действующей на систему. Известные способы создания активных движущих сил подчинены закону сохранения количества движения изменяемых механических систем, основному закону динамики и реализуются в работе воздушного и гребного винтов, в реактивном движении самолетов и ракет, а также проявляются в отдаче и откате при стрельбе из стрелкового оружия и артиллерийских орудий. Недостатки известных способов создания активных движущих сил заключаются в невысокой удельной эффективности и ограниченной возможности применения, что обусловлено зависимостью от состояния и свойств окружающей среды перемещения транспортных средств, в непродолжительности импульса внешней реактивной движущей силы тяги из-за ограниченности массы отбрасываемого рабочего тела, входящего в состав изменяемой механической системы, например масс окислителя и горючего, транспортируемых ракетами. Наиболее близким техническим решением из числа известных является способ создания активных движущих сил в изменяемых механических системах, включающий приложение к каждому из тел системы внешних окружных сил, вращающих тела вокруг оси, проходящей через центр масс системы, уравновешивание моментов указанных окружных сил внешними моментами сопротивления вращению каждого из тел при поддержании постоянным суммарного момента количества движения системы относительно указанной оси (Тарг С.М. Краткий курс теоретической механики. М. 1986, с.292-295). Известный способ создания вращательного движения изменяемых механических систем также подчинен основному закону динамики, а именно закону сохранения главного момента количеств движения систем, и реализуется в опытах с платформой Жуковского, с раскачиванием качелей или, например, в появлении реактивного момента вращения корпуса одновинтового вертолета, компенсируемого во время раскрутки лопастей несущего винта внешним моментом сил трения, действующим через шасси на корпус вертолета со стороны посадочной площадки, а после взлета силой тяги рулевого винта, создающей на плече хвостовой балки момент внешних сил относительно оси вращения несущего винта, проходящей через центр массы вертолета. Недостаток способа, принимаемого в качестве прототипа, заключается в ограниченности его применения для создания только вращательного движения изменяемых механических систем и обусловлен тем, что создающие главный момент количеств движения систем окружные составляющие внешних сил не используются непосредственно для создания активных движущих сил, поступательно перемещающих центры масс изменяемых систем. Технический результат, который может быть получен от использования настоящего изобретения, состоит в непосредственном создании активных движущих сил на оси и в плоскости вращения изменяемых механических систем, поступательно перемещающих центры масс этих механических систем. Указанный технический результат достигается за счет того, что в известном способе создания активных движущих сил в изменяемых механических системах внешние окружные силы циклически изменяют по величине, с частотой вращения тел, по синусоидальному закону асимметрично относительно заданной оси действия результирующей активной движущей силы, лежащей в плоскости вращения тел системы и проходящей через центр масс данной системы, причем уравновешивание моментов внешних окружных сил моментами сопротивления осуществляют, поддерживая постоянной угловую скоростью вращения тел системы. В другом варианте способа создания активных движущих сил в изменяемых механических системах внешние окружные силы циклически изменяют по величине и направлению, с периодом вращения тел, по синусоидальному закону асимметрично относительно заданной оси действия результирующей активной движущей силы, лежащей в плоскости вращения тел системы и проходящей через центр масс данной системы, причем указанный синусоидальный закон и изменение уравновешивающих моментов выбирают с обеспечением циклически переменной угловой скорости и знакопеременного углового ускорения, изменяющихся по синусоидальным законам симметрично относительно указанной оси действия результирующей активной движущей силы. Кроме того, в указанном варианте одновременно с циклическими изменениями внешних окружных сил, угловой скорости и ускорения циклически изменяют массу каждого тела системы, с периодом его вращения, по синусоидальному закону симметрично оси действия результирующей активной движущей силы, поддерживая неизменной массу всей системы. На фиг. 1 представлена абстрактная модель изменяемой механической системы, реализующей первый вариант способа; на фиг.2 совмещенные графики циклических изменений внешних окружных сил






























































Второй вариант способа реализует следующим образом. Соответствующими управляющими воздействиями на рассматриваемую изменяемую механическую систему (фиг.3) величины уже действующих в системе внешних окружных сил циклически изменяют по законам (1) и (2), в которых дополнительно задают равенство циклических приращений этих сил, т.е.



Rиi=



где qR <1 коэффициент интенсивности циклических изменений главного вектора сил, а азимутальный угол положения рычага 2 в плоскости его вращения (фиг.3) отсчитывается аналогично первому варианту. Характер циклических изменений внешних сил и их главного вектора обобщенного азимутального угла во втором варианте способа показан на совмещенных графиках (фиг. 4). Как видим из графиков на фиг.4 и из формулы (8), главный вектор обладает по существу свойствами знакопеременного окружного ударного импульса внешней окружной силы, действующей на рычаг 2. Поэтому вращение последнего происходит с циклически переменной угловой скоростью и со знакопеременным угловым ускорением. Неравномерное вращение рычага 2, рассматриваемого далее в виде однородного материального стержня, приводит к возникновению действующих на него внутренних инерционных сил. Пользуясь основным определением пропорциональности величин инерционных сил, соответствующим ускорениям, изобразим их приложенными к неравномерно вращающемуся рычагу на фиг. 3 и из известных формул на базе принципа Д'Аламбера получим выражение для циклически изменяющейся угловой скорости:

где A








TR=mcrc

Подставив в (10) развернутое выражение величины А, получим
TR=(

Из этих результатов следует что, во-первых, создание активной движущей силы в изменяемой механической системе получают за счет циклических изменений внешних окружных сил по законам (1) и (2) при равных модулях их номинальных значений и при равных значениях коэффициентов интенсивности, но без участия в процессе создания силы TR каких-либо внешних моментов. Во-вторых, из условия соблюдения окружного динамического равновесия неравномерно вращающегося рычага следует взаимокомпенсирующий характер противодействия главного вектора внешних окружных сил и инерционной окружной или тангенциальной (фиг.3). Таким образом, реализация второго варианта заявляемого способа позволяет оптимизировать процесс создания активной движущей силы за счет циклических изменений только внешних окружных сил без участия в этом процессе внешних моментов, а следовательно, без необходимости в циклических изменениях последних. При этом величина активной движущей силы (TR) не уменьшается по сравнению с первым вариантом реализации способа, следовательно, сохраняется возможность поступательного перемещения всей системы под действием этой силы. Модель изменяемой механической системы, реализующей третий вариант настоящего способа, также представляет собой двухзвенный рычажный механизм (фиг. 9), включающий стойку 1 и рычаг 2, моделирующий отдельное звено ротора произвольного многофункционального устройства. Как в первых двух вариантах, рычаг 2 установлен в цилиндрическом шарнире 3 стойки 1 с возможностью вращения вокруг оси шарнира 3, проходящей через точку О центра массы всей системы. Однако в отличие от первых двух вариантов масса рычага распределена по всей его длине не равномерно, а сосредоточена в точке С на свободном конце рычага. Причем точка С центра массы рычага соединена с точкой О оси опорного шарнира 3 на стойке 1 условно невесомой, нерастягивающейся нитью. Поэтому вращение рычага в этом варианте способа можно рассматривать как вращение материальной точки С, положение которой относительно оси и в плоскости вращения определяется радиус-вектором


Третий вариант способа реализуется следующим образом. Соответствующими управляющими воздействиями на рассматриваемую изменяемую механическую систему (фиг.9), моделирующую рабочие процессы в некоторых устройствах, циклические изменения по законам (1) и (2) действующих на точку С внешних окружных сил сопровождают циклическими изменениями массы точки С по синусоидальному (косинусоидальному) закону:
mci=mc[1+qmcos(

где qm




и в окончательном виде таковы:

Сравнивая (14) с соответствующими формулами второго варианта способа, видим, что циклическое изменение массы точки С по закону (12) в рассматриваемом третьем варианте способа увеличивает интенсивность циклических изменений угловых скорости и ускорения по сравнению с вторым вариантом:

Характер циклических изменений этих величин в зависимости от обобщенного азимутального угла радиус-вектора точки С в плоскости ее вращения для сравнения с вторым вариантом показан на совмещенных графиках (фиг.6) прерывистыми линиями. Формулу для определения истинного азимутального угла




где

Характер циклических изменений данных углов для сравнения с аналогичными углами во втором варианте показан на совмещенных графиках (фиг.5) прерывистыми линиями, из которых для случая A qm следует возможность приведения азимутального угла к виду, удобному для последующего интегрирования:



Тригонометрические функции угла (17) могут получаться разложением в ряд и удержанием в нем наиболее значимых членов. Практическая достаточность в точности вычислений, производимых с учетом принятых выше допущений, доказывается определением среднециклической величины проекции главного вектора внешних окружных сил на результирующую ось OY в рассматриваемом третьем варианте способа и сравнением этого результата с аналогичным во втором варианте. Значение силы TR определяет только часть величины активной движущей силы, создаваемой в рассматриваемом третьем варианте способа. Из условий динамического равновесия неравномерно вращающейся точки С переменной массы, используя принцип Даламбера, можно установить с учетом инерционной тангенциальной силы F


т. е. так называемой параметрической силы, знакопеременное направление вектора которой совпадает в рассматриваемом случае с направлением главного вектора внешних окружных сил. В положительном направлении результирующей оси OY эта сила создает свою составляющую активной движущей силы Tm. Появление параметрической силы в процессе движения точки С следует из уравнения (13), выражающего теорему об изменении момента количества движения рассматриваемой механической системы (фиг. 9). Из уравнения (13) также следует, что первое слагаемое левой части представляет собой инерционную тангенциальную силу. Характер циклических изменений величины параметрической силы в зависимости от обобщенного азимутального угла


Величину суммарной движущей силы, создаваемой в третьем варианте заявляемого способа, определится так:
T



Поскольку действие на точку С главного вектора внешних окружных сил







Тогда суммарная сила

Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10