Способ измерения абсолютного значения плотности тела
Использование: в измерительной технике, в частности в комптоновской вычислительной томографии. Сущность изобретения: способ измерения абсолютного значения плотности тела включает в себя операции облучения тела в различных направлениях источниками коллимированного первичного гамма- и рентгеновского излучения с энергиями E1 и E2, регистрации вторичного излучения коллимированными детекторами D1 и D2 и вычисления по определенному алгоритму абсолютного значения плотности. При этом первоначально оси коллиматоров и детектора ориентируют таким образом, чтобы они пересекались в точке, лежащей на внешней поверхности тела. Затем дискретно перемещают жестко связанную систему источника - детектор в направлении заранее выбранной координаты X, проходящей через тело, и измеряют поток излучения N1i, регистрируемого детектором Dt, на каждом шаге перемещения. Перемещение производят до тех пор, пока точка пересечения осей коллиматоров источника и детектора не достигнет внутренней поверхности тела. После чего устанавливают энергию излучения источника, равную энергии квантов, рассеянных на угол в направлении детектора E2= Es(
) , помещают источник излучения с энергией E2 в место и в позицию детектора D1, помещают детектор D2 в место и в позицию источника излучения с энергией E1 и дискретно перемещают систему источник-детектор по координате X в направлении внешней поверхности тела. Одновременно измеряют поток излучения N2i, регистрируемого на каждом шаге перемещения до тех пор, пока точка пересечения осей коллиматоров источника и детектора не достигнет внешней поверхности тела. Определяют абсолютное значение плотности
i последовательно на каждом шаге перемещения, начиная с первого, используя определенный алгоритм вычислений. 2 ил.
Изобретение относится к измерительной технике и предназначено для использования в комптоновской вычислительной томографии в условиях одностороннего доступа к объекту контроля.
Известны способы и устройства, их реализующие, основанные на регистрации комптоновски рассеянного гамма- или рентгеновского излучения и предназначенные для получения изображения распределения плотности по лучу сканирования [1 3] Основными недостатками известных способов являются: требование двухстороннего доступа к контролируемому телу; неучет влияния процессов ослабления первичного и рассеянного в направлении детектора излучения. Из известных технических решений ближайшим к изобретению является способ измерения абсолютного значения плотности тела, включающий в себя операции облучения тела в различных направлениях источниками коллимированного первичного гамма- или рентгеновского излучения с энергиями E1 и E2, регистрации вторичного излучения коллимированными детекторами D1 и D2 и вычисления по определенному алгоритму абсолютного значения плотности [4] Известный способ позволяет учесть влияние эффектов ослабления и измерить абсолютное значение плотности тела. Недостатком известного способа является обязательное требование двухстороннего доступа к объекту контроля и получение информации о характеристиках не только рассеянного, но и прошедшего (непровзаимодействовавшего) излучения. Техническим результатом изобретения является обеспечение послойного измерения абсолютного значения плотности тела как функции его толщины в условиях одностороннего доступа к нему. Технический результат достигается тем, что в способе измерения абсолютного значения плотности тела, включающем в себя операции облучения тела в различных направлениях источниками коллимированного первичного гамма- или рентгеновского излучения с энергиями E1 и E2, регистрации вторичного излучения коллимированными детекторами D1 и D2 и вычисления по определенному алгоритму абсолютного значения плотности, ориентируют оси коллиматоров источника и детектора таким образом, чтобы они пересекались в точке, лежащей на внешней поверхности тела, дискретно перемещают жестко связанную систему источник-детектор в направлении заранее выбранной координаты X, проходящей через тело, измеряют поток излучения N1i, регистрируемого детектором D1, на каждом шаге перемещения до тех пор, пока точка пересечения осей коллиматоров источника и детектора не достигнет внутренней поверхности тела, устанавливают энергию излучения источника, равную энергии квантов, рассеянных на угол









где




NA число Авогадро;
Z, A атомный номер и массовое число вещества тела;


где








Коррекция изменения линейного коэффициента ослабления на пути X производится путем прямого измерения плотности первого слоя (случай, когда предшествующих слоев нет) и использованием следующего алгоритма вычисления плотности последующих слоев. Это можно проиллюстрировать следующими рассуждениями. После логарифмирования последнего соотношения получим

где

Знаки дифференциалов при N1 и N2 здесь опущены. Перейдем к конечным суммам для линейных коэффициентов ослабления







где n количество слоев, предшествующих i-му слою. Жестко связанную систему источник-детектор устанавливают таким образом, чтобы точка пересечения осей коллиматоров источника и детектора лежала на внешней поверхности тела (фиг. 2а), дискретно перемещают систему вдоль координаты X, фиксируя при этом величину потока N1i на каждом шаге перемещения X до тех пор, пока точка пересечения осей коллиматора источника и детектора не достигнет внутренней поверхности тела. Затем меняют местами источник излучения и детектор и изменяют энергию излучения источника (фиг. 2б), установив ее равной E2= Es(




и плотность




Формула изобретения







где Х координата перемещения;



I1 и I2 начальные потоки излучения источника, имеющего энергии Е1 и Е2 соответственно;
С1 и С2 эффективности регистрации излучения детекторами D1 и D2 соответственно.
РИСУНКИ
Рисунок 1