Использование: изобретение относится к измерительной технике, в частности к средствам контроля за содержанием нефтепродуктов в сточных водах, и может быть применено в нефтяной промышленности на локальных очистных сооружениях для индикации содержания нефтепродуктов в сточных водах. Сущность изобретения: устройство дополнительно снабжено второй измерительной камерой, погруженной в контролируемую жидкость, с локализацией поверхностного слоя, а вход и выход первой камеры выполнены зигзагообразной формы. В верхних частях обеих камер установлены устройства ввода, вывода изучения, оптически сопряженные соответственно с источником излучения и через спектральные светофильтры с приемниками излучения, электрически соединенными с блоками обработки и индикации. 2 ил.
Изобретение относится к измерительной технике, в частности к средствам контроля за содержанием нефтепродуктов в сточных водах, и может быть применено в нефтяной, нефтеперерабатывающей и нефтехимической промышленности на локальных очистных сооружениях для индикации содержания нефтепродуктов в сточных водах.
Известно устройство для контроля содержания нефтепродуктов в воде [1] принцип действия которого основан на определении светопропускания потока воды в области спектра (

=254 нм), характеризуемого максимальным поглощением нефтепродуктами излучения. Недостатками данного устройства являются низкие функциональные возможности и достоверность контроля.
Наиболее близким по технической сущности к предлагаемому является индикатор загрязнения водной поверхности нефтепродуктами [2] содержащий моностатический лидар со сферическим приемным зеркалом, в фокусе которого установлен кремневый фотодиод, и источником излучения, выполненным на полупроводниковом лазере или инфракрасным светодиоде. Лидар крепится на кронштейне, расположенном на жестко связанных поплавках. На этих же поплавках размещены источник питания, блок обработки и блок индикации. Индикатор фиксирует наличие нефтепродуктов по контрасту нефтяной пленки на чистой водной поверхности.
Недостатками данной конструкции являются низкие функциональные возможности, обусловленные неспособностью устройство контролировать содержание нефтепродуктов в воде в растворенном состоянии, а также низкая достоверность контроля из-за возможности ложного срабатывания индикатора в случае изменения естественного, искусственного освещения или появления веществ на поверхности воды не нефтяного происхождения, с коэффициентом отражения, большим, чем у воды.
Изобретение решает задачи повышение достоверности контроля и расширения функциональных возможностей устройства.
Задача решается тем, что устройство дополнительно снабжено второй измерительной камерой, погруженной в контролируемую жидкость, с локализацией поверхностного слоя, а вход и выход первой камеры выполнены зигзагообразной формы, причем в верхних частях обеих камер установлены устройства ввода излучения в виде линз, сопряженных с удвоителем частоты и вывода излучения в виде линз, оптически связанных посредством волоконно-оптической линии связи соответственно с источником и через спектральные светофильтры с приемниками излучения, электрически соединенными с блоками обработки и индикации. Данные признаки являются существенными для решения задачи изобретения, так как наличие в устройстве двух камер позволяет расширить функциональные возможности устройства за счет определения содержания растворенных нефтепродуктов в воде и идентификации пленки, а выполненные зигзагообразной формы вход и выход первой камеры блокируют попадание естественного или искусственного внешнего освещения в нее, не препятствуя попаданию пленки. Совокупность признаков по устройствам ввода, выводы излучения позволяет вести измерение одновременно в обоих камерах и регистрировать наличие нефтепродуктов по их интегральной люминесценции.
На фиг. 1 изображены продольный вертикальный разрез устройства и его структурная схема; на фиг.2 продольный горизонтальный разрез устройства.
Устройство содержит пару поплавков 1,2, жестко соединенных между собой кронштейнами с образованием изолированных друг от друга измерительных камер 3,4. Камера 3 частично погружена всем своим периметром в жидкость с локализацией поверхностного слоя. Камера 4 частично погружена в жидкость с возможностью ее похождения через внутреннюю полость камеры 4 по входному 5 и выходному 6 каналам зигзагообразной формы. В верхних частях камер 3,4 установлены устройства ввода ультрафиолетового (УФ) излучения в виде линз 7,8 из материала, пропускающего излучение данной области спектра (например, марки КУ), оптически сопряженных с выходом удвоителя частоты 9, и устройства вывода излучения в виде линз 10,11. Выход удвоителя частоты 9 и выхода устройства 10,11 вывода излучения через волоконно-оптические линии связи (ВОЛС) 12 соединены соответственно с источником излучения 13 видимой области спектра (лазером), и через спектральные светофильтры 14,15 с приемниками излучения 16,17, которые в свою очередь электрически связаны с блоками обработки 18 и индикации 19.
Устройство работает следующим образом. Источник излучения 13 вырабатывает монохроматический лучистый поток в видимой области спектра с силой излучения I
э [3]

где dp мощность излучения; dd

телесный угол, в пределах которого распространяется излучение.
Учитывая, что излучение передается по ВОЛС 12, на выходе линии будем иметь силу излучения I
1э.

гдe K1 коэффициент передачи по ВОЛС.
Таким образом, попадая на вход удвоителя частоты 9, лучистый поток с частотой n
1 в видимой области спектра преобразуется в кристалле, не имеющем центра симметрии, в частоту 2
1, которая соответствует УФ спектральному диапазону, сила излучения I
2э которого будет равна

где К2 коэффициент передачи излучения через удвоитель частоты.
Лучистый поток с выхода удвоителя частоты 9 попадает равномерно на устройство ввода излучения 7,8, которые его колемируют и направляют на поверхность контролируемой жидкости в измерительных камерах 3,4. Общее выражение силы излучения I
3э, направленное на поверхность жидкости каждой измерительной камеры, можно записать

где K3 коэффициент передачи лучистого потока через устройства ввода излучения 7,8.
Попадая на поверхность жидкости часть УФ-излучения отражается, а часть проникает в слой жидкости, поглощаясь ею в зависимости коэффициента поглощения воды K
в (УФ) [3]

где

коэффициент экстинкции, характеризующий в данном случае потери оптического излучения за счет его поглощения и рассеивания;
l длина волны излучения.
Так как облучение жидкости проводится на длине волны УФ спектра, для которого в одинаковой среде
k
уф >>
в, (6)
где
уф,
в коэффициенты экстинкции соответственно для УФ- и видимого излучения,
то
K
в(УФ) > K
в(в), (7)
где K
в(в) коэффициент поглощения воды излучения видимой области спектра.
Учитывая, что ослабление излучения на глубине d

происходит по экспоненциальному закону [3]т.е.
dI
4э = I
3эexp(-K
вd

), (8)
где dI
4э сила УФ-излучения на глубине d

,
а также выражения (5,6,7), видно, что интенсивность УФ-излучения будет резко уменьшаться по мере проникновение через слой воды. В свою очередь сила УФ-излучения dI
4э на глубине d

будет связана с силой люминесценции dJ
л контролируемой жидкости, вызванной этим УФ-излучением [4]
dI
л dI
4э
K(195)

(1-10
а), (9)
где K постоянный для данного прибора коэффициент, учитывающий фактор перехода от интенсивности поглощенного излучения к той части непоглощенного люминесцентного излучения, которое попадает на устройства вывода излучения 10,11;
А оптическая плотность раствора на длине волны падающего УФ-излучения, значение которой зависит от K
в и показателя преломления воды N.
Из выражения (8,9) следует, что максимальная интенсивность люминесценции будет наблюдаться в верхних слоях жидкости, что подтверждают полученные экспериментальные данные (1-3 мм). На измерении силы излучения люминесценции пленки и растворенного нефтепродукта именно в этих слоях и рассчитана работа устройства.
Учитывая, что устройство снабжено двумя измерительными камерами 3,4, в которых при отсутствии пленки нефтепродуктов будет соблюдаться условие
I
л(3k) I
л4k I
л, (10)
где I
л(3k), I
л(4k) сила люминесценции в измерительных камерах 3,4,
то под действием прошедшего через устройства вывода излучения 10, 11, ВЛС 12, спектральные светофильтры 14,15 излучения приемниками излучения 16,17 будут вырабатываться одинаковые по амплитуде сигналы U.
U = S
I
R
н
ф.д
K4, (11)
где S
I токовая чувствительность фотодиода;
R
Н сопротивление нагрузки;
K
4 коэффициент передачи через устройства вывода излучения ВОЛС, спектральные светофильтры;
ф.д лучистый поток, принимаемый фотодиодом.

где

1 телесный угол, принимаемый устройствами вывода 10,11 излучения люминесценции
или

Полученные сигналы обрабатываются блоком обработки 18 и сравниваются в нем.
При условии равенства сигналов в камере 3 измеряется интегральная по спектру люминесценция растворенных в воде нефтепродуктов, интенсивность которой будет зависеть количественного содержания этих веществ и коэффициента А в выражениях (9,13). Если величина сигнала от приемника излучения 16 по амплитуде будет больше, чем предварительно отградуированная на определенное содержание нефтепродуктов, блок сравнения 18 выдает сигнал на устройство индикации 19. В случае, если в камере 4 появляется пленка нефтепродуктов, то нарушается выражение (10) из-за сильной интенсивности люминесценции свободных нефтепродуктов, т. е. I
л4к > I
л3к. Блок обработки 18 при сравнении сигналов с фотоприемников 16,17 фиксирует разницу U
I4- U
I3>0 и выдает сигнал на устройство индикации 19.
Данное устройство по сравнению с прототипом имеет более широкие функциональные возможности и высокую достоверность контроля за счет определения не только пленки нефтепродукта, но и определения превышения нормированного содержания растворенных нефтепродуктов в воде по интенсивности интегральной люминесценции при облучении УФ-излучением.
Формула изобретения
Устройство индикации загрязнения сточных вод нефтепродуктами, содержащее пару поплавков, связанных между собой кронштейнами, с образованием измерительной камеры, источник и приемник излучения, электрически соединенные соответственно с блоками питания, обработки и индикации, отличающееся тем, что устройство дополнительно снабжено второй измерительной камерой, погруженной в контролируемую жидкость с локализацией поверхностного слоя, а вход и выход первой камеры выполнены зигзагообразной формы, причем в верхних частях обеих камер установлены устройства ввода излучения в виде линз, сопряженных с удвоителем частоты и вывода излучения в виде линз, оптически связанные посредством волоконно-оптической линии связи соответственно с источником и через спектральные светофильтры с приемниками излучения, электрически соединенными с блоками обработки и индикации.
РИСУНКИ
Рисунок 1,
Рисунок 2