Использование: медицинская техника, а именно приборы для определения степени насыщения крови кислородом. Сущность изобретения: в оксигемометре, содержащем модуль регистрации рассеянного в крови излучения, оптический разъем с излучателями, фотодетектором и предусилителем, торец оптоволоконного жгута, обращенный к кювете, набран из моноволокон равномерно и пристыкован к цилиндрической кювете так, что его продольная ось симметрии лежит в одной плоскости с осью кюветы и составляет с перпендикуляром к оси кюветы, лежащим в той же плоскости, угол 30 50°, при этом d/D
1 где d-диаметр жгута; D-диаметр кюветы. 3 ил.
Изобретение относится к медицинской технике, а именно к приборам для определения степени насыщения крови кислородом (StO2).
Известны устройства для измерения StO
2 оксигемометры, основанные на регистрации излучения двух спектральных диапазонов длин волн по обе стороны от изобестической длины волны 0,8 мкм, рассеянного в крови, в которых в качестве источников излучения использованы полупроводниковые инжекционные лазеры, расположенные на одной прямой по обе стороны цилиндрической кюветы, в качестве которой может служить светопрозрачный участок магистрали аппарата искусственного кровообращения (АИК) [1] Лазеры излучают навстречу друг другу. Фотодетектор расположен под углом 90

0,2
о по отношению к оси световых пучков и связан с блоком коммутации, выход которого, в свою очередь, соединен с входом блока регистрации и отображения.
Устройство обладает недостатками, затрудняющими, а порой и исключающими их применение в хирургической практике. В частности, недостатком является удаление фотодетектора и связанного с ним предусилителя от модуля регистрации, поскольку возможно возникновение мощной электромагнитной помехи, например, как в случае использования дефибриллятора, которая может привести к выходу из строя АЦП или микросхемы, на которой выполнен предусилитель. Наряду с этим, наличие электрической связи модуля регистрации с оптическим модулем, располагаемым непосредственно на магистралях АИК, не может полностью исключить вероятность электрического пробоя на элементы аппарата, непосредственно контактирующие с пациентом.
Наиболее близким техническим решением к предлагаемому является устройство, предназначенное для контроля StO
2 внутри кровеносных сосудов [2] Устройство состоит из катетера, с включенным в него оптоволоконным жгутом, один из концов которого снабжен оптическим узлом ввода излучения. Ответная часть узла содержит два излучателя-светодиода с длинами волн
1= 0,67 мкм и
2 0,93 мкм соответственно и фотодетектор. Фотодетектор связан с предусилителем, расположенным в едином блоке с оптическим узлом ввода, который, в свою очередь, соединен с блоком регистрации. Устройство не может быть применено для измерения бесконтактным способом в системе АИК, поскольку в этом случае погрешность измерений выходит за допустимые рамки.
Недостатком данного устройства является неудовлетворительные весогабаритные характеристики, что требует дополнительной фиксации модуля на стойках АИК. В противном случае возможен разрыв соединений магистрали под весом устройства. Кроме того, фотодетектор вместе с предусилителем также отнесены на некоторое расстояние от модуля регистрации, что снижает помехоустойчивость устройства.
Цель изобретения малый вес, повышение помехоустойчивости и надежности.
На фиг. 1 приведена общая схема предлагаемого устройства; на фиг. 2 вариант фиксации оптоволоконного жгута на кювете; на фиг. 3 калибровочная зависимость StO
2 f(P).
Оксигемометр содержит размещенные в едином корпусе два излучателя 1 с длинами волн, лежащими по обе стороны от изобестической длины волны, оптоволоконный жгут 2, цилиндрическую кювету 3, фотодетектор 4, предусилитель 5 и генератор 6, связанные с блоком 7 коммутации, который, в свою очередь, соединен с системой 8 регистрации. Излучатель 1 расположен в одной части оптического разъема, в непосредственной близости друг от друга, там же находится и фотодетектор 4. В ответной части этого разъема содержится разветвляющийся на три отдельных ветви конец оптоволоконного жгута 2 таким образом, что две ветви расположены напротив излучателей 1, а одна напротив фотодетектора 4. Второй конец оптоволоконного жгута, объединенный в общий пучок, закреплен в держателе, располагаемом непосредственно на цилиндрической кювете 3, в качестве которой может служить эластичная светопрозрачная трубка АИК. Объединенный конец жгута 2 расположен по отношению к кювете 3 таким образом, что его продольная ось симметрии лежит в одной плоскости с осью кюветы 3, причем эта ось составляет с перпендикуляром к оси кюветы угол не менее 30-50
о. Фотодетектор 4 связан с предусилителем 5, выход которого соединен с входом блока 7 коммутации, с другим его входом соединен генератор 6, формирующий импульсы питания для излучателей 1.
Устройство работает следующим образом.
Излучение от поочередно включаемых с помощью генератора 6 светодиодов 1 вводится в волокно и освещает кровь, находящуюся в цилиндрической кювете 3. Единый конец оптоволоконного жгута 2 фиксируется на кювете, в качестве которой может служить эластичная магистраль АИК, с помощью миниатюрного держателя, позволяющего его размещение на эластичной магистрали без размонтирования последней. Держатель представляет собой цилиндр с выфрезерованной цилиндрической поверхностью таким образом, что обеспечивается охват магистрали АИК на угол примерно 200
о (фиг. 2). Подобная конструкция позволяет, слегка сплющив пальцами эластичную трубку АИК, ввести ее через выфрезерованную щель в держатель, где после отпускания она восстанавливает свою форму и плотно охватывается держателем, тем самым обеспечивается его надежное закрепление на магистрали. В цилиндрической поверхности держателя предусмотрено отверстие и крепление для ввода и фиксации в нем единого конца оптоволоконного жгута 2, причем угол между продольной осью симметрии этого конца и перпендикуляром к оси кюветы должен составлять 30-50
о. Выбор этого угла обусловлен необходимостью исключения попадания излучения, отраженного от стенок магистрали, в принимающие волокна жгута, поскольку отраженное излучение дает постоянный аддитивный вклад в регистрируемые сигналы, который не удается исключить в результате последующей обработки, что приводит к существенной погрешности измерений. По оценкам геометрической оптики и учета приемной апертуры моноволокон, указанный угол не должен быть менее 19
о, однако непосредственные измерения на реальных полимерных трубках привели к увеличению данного угла до 30
о, что связано с невозможностью учета в оценках мутности стенок трубок и соответственно обусловленного этим неучета рассеяния на них. Вместе с тем необходимо учитывать, что увеличение этого угла вплоть до 90
о приводит к снижению регистрируемых сигналов, что также ухудшает точность измерений. Таким образом, сделав угол между осью оптоволоконного жгута 2 и перпендикуляром к оси цилиндрической кюветы 3 не менее 30, но не более 50
о обеспечивается прием излучения, рассеянного только кровью, и позволяет реализовать погрешность измерений, не превышающую

2% в диапазоне насыщения крови кислородом от 40 до 100% Также на погрешность измерений влияет соотношение диаметров оптоволоконного жгута и цилиндрической кюветы: диаметр оптоволоконного жгута должен быть много меньше диаметра кюветы (d/D<<1). В противном случае начинает давать вклад цилиндричность кюветы, что влечет увеличение погрешности измерений свыше

2% В принципе возможно использование оптоволоконного жгута любого диаметра, но этот диаметр будет определять и минимальный диаметр кюветы.
Далее это излучение принимается фотодетектором 4. Фототок с фотодетектора 4 усиливается предусилителем 5 и поступает на вход блока 7 коммутации, с которым также связан генератор 6. Здесь происходит выделение импульсов фототока, соответствующих излучению каждого из источников 1, после чего выделенные и усиленные импульсы фототока поступают на вход блока 8 регистрации, где осуществляется их анализ и обработка.
Определение StO
2 основано на нахождении отношения Р величин фототоков, соответствующих интенсивностям рассеянного в крови излучения с
2 0,96 мкм и
10,65 мкм соответственно (Р I
ик/I
к). Значение StO
2 вычисляется как функция этого параметра: StO
2 f(P) (фиг. 3).
В качестве источников излучения I использованы светодиоды с длинами волн
1 0,65 мкм и
2 0,96 мкм соответственно, включающиеся попеременно с частотой f 0,5 кГц и длительностью 0,25 мкс. Оптоволоконный жгут 2 представляет собой нерегулярный пучок моноволокон с диаметром 50 мкм каждое. На одном конце жгут разделен на три ветви, содержащие равное количество волокон, диаметр каждой такой ветви равен 1 мм. Такой диаметр ветви позволяет избежать специальных устройств ввода излучения без существенных потерь мощности излучения. С другой стороны, светочувствительная площадка фотодетектора 4 сравнима по величине с сечением одинарной ветви, поэтому и в этом случае потери излучения ничтожны. На другом конце все моноволокна собраны в единый жгут, в котором моноволокна перемешаны случайным образом. Диаметр этого конца равен 1,8 мм. В качестве фотодетектора использован кремниевый фотодиод. Система регистрации разработана на базе процессора.
Использование данной конструкции держателя оптоволоконного жгута на кювете позволяет использовать один оптоволоконный жгут, в случае перехода к измерениям на кюветах другого диаметра смене подлежит только держатель.
Данное устройство позволяет проводить измерения на кюветах всех используемых в клинической практике диаметров, начиная с 6 мм. Это ограничение связано с тем, что благодаря нерегулярности оптоволоконного жгута условия измерения приближаются к условиям задачи о рассеянии падающей плоской волны на полубесконечный слой случайных рассеивателей. В связи с этим необходимо соблюсти условие: диаметр оптоволоконного жгута должен быть много меньше диаметра кюветы (d/D<<1).
Формула изобретения
ОКСИГЕМОМЕТР, содержащий светодиодные излучатели, соединенные с генератором и оптически связанные через оптоволоконный жгут, включающий три пучка моноволокон, два из которых осветительные, третий принимающий, и исследуемую среду с фотодетектором, соединенным через предусилитель с блоком коммутации, который соединен с блоком регистрации, отличающийся тем, что в него введена цилиндрическая кювета для размещения исследуемой среды, выполненная из упругого светопрозрачного материала, и держатель, закрепленный на кювете, при этом моноволокна на торце оптоволоконного жгута, обращенного к кювете, распределены равномерно по сечению торца, а оптоволоконный жгут зафиксирован в держателе так, что его продольная ось симметрии лежит в одной плоскости с осью кюветы и составляет с перпендикуляром к оси кюветы, лежащим в той же плоскости, угол 30 50
oС, при этом отношение диаметров оптоволоконного жгута d и кюветы D удовлетворяет соотношению d/D << 1.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3