Способ диагностики поршневого двигателя внутреннего сгорания и устройство для его осуществления
Сущность изобретения: для определения мощностей отдельных цилиндров двигателя внутреннего сгорания при определенных угловых положениях коленчатого вала измеряют значения угловой скорости вращения двигателя, по конструктивным данным двигателя определяют соответствующие значения общего момента инерции и по полученным данным определяют общую энергию двигателя. По результатам сравнения значений энергии в характерных для отдельных цилиндров диапазонах угла поворота коленчатого вала можно составить суждение о работе отдельных цилиндров. 2 с. и 8 з.п. ф-лы, 6 ил.
Изобретение может быть использовано при технической диагностике поршневых многоцилиндровых двигателей внутреннего сгорания для определения крутящих моментов или мощностей, развиваемых отдельными цилиндрами.
Известен способ диагностики двигателей внутреннего сгорания, в соответствии с которым крутящие моменты, развиваемые отдельными цилиндрами, определяют путем сравнения значений энергии, накапливаемой двигателем при различных угловых положениях коленчатого вала (см. патент США N 4292670). Недостатком данного способа является то, что при определении значений энергии принимают эквивалентный момент инерции двигателя постоянным, не зависящим от углового положения коленчатого вала. Способ и устройство по патенту США N 429670 приняты за прототип. Известны также способы и устройства диагностики используемые в основном при разработке новых ДВС или их узлов. Недостаток таких устройств и способов состоит в том, что оценка мощностей или крутящих моментов, создаваемых отдельными цилиндрами, требует каждый раз измерять давление газа в отдельных цилиндрах, а это давление газа может меняться во времени или в зависимости от угла поворота коленчатого вала, в связи с чем связано с конструктивными величинами ДВС, и его нужно пересчитывать для получения искомой величины мощности или крутящего момента. Эти измерения давления газа требуют высоких конструктивных или монтажных затрат и могут проводится лишь в редчайших случаях для периодического контроля или испытания уже эксплуатируемых ДВС, поскольку, как правило, необходимо предусмотреть инспекционные отверстия для чувствительных элементов датчиков, что в целом противоречит серийному использованию такого диагностического контроля. Задача заявляемого решения состоит в таком усовершенствовании способа или устройства, которое исключало бы названные недостатки и позволяло бы проводить оценку мощности или крутящего момента отдельного цилиндра наиболее просто и тем не менее достоверно и с малыми затратами. Такую оценку нужно выполнять без создания дополнительных инспекционных отверстий в цилиндрах ДВС, благодаря чему появляется возможностью проводить даже стандартные исследования на серийных двигателях. Способ диагностики вышеописанного типа состоит для достижения этой цели из следующих операций при определенных угловых положениях коленчатого вала: а/ не менее чем на одной детали ДВС непрерывно измеряют соответствующее число оборотов или угловую скорость; б/ по конструктивным данным ДВС определяют эквивалентный момент инерции 1/



Wнагр отдаваемая наружу механическая работа (в двигателе, работающем без нагрузки, Wнагр 0);
Eкин кинетическая энергия, накопленная внутри двигателя, зависит от


Eпот потенциальная энергия, накопленная внутри двигателя. Из-за кручения или растяжения тоже происходит кратковременное накопление энергии в элементах двигателя. Эта составляющая обусловливает изменение

для одноцилиндрового двигателя при интервале угла поворота коленчатого вала 720o можно записать уравнение 1 в упрощенном виде:
Pe Pi Pf, Ур. 1в
где Pe эффективное среднее давление;

Vh рабочий объем цилиндра;
Pгаз изменение давления газа в камере сгорания цилиндра (обычно измеряется датчиками давления, установленными в особых инспекционных отверстиях);

Mf крутящий момент всех механических потерь на трение в двигателе при его действии на маховик;
a угловое положение коленчатого вала. Эти значения справедливы для одного цилиндра. Вся энергия, накопленная в двигателе, однако, зависит от влияния всех цилиндров, хотя и занимающих различное положение в процессе. Для 4-цилиндрового рядного двигателя в 4-тактном цикле различие накопленной энергии находится поэтому в пределах Da 720/4 180o поворота коленчатого вала. Здесь создаются "смешанные средние давления", на которые, в принципе, влияют все цилиндры, но главным образом те, которые находятся в решающем участке контура высокого давления. Эти "смешанные средние давления" обозначаются звездочкой (индекс j обозначает рассматриваемый цилиндр):

Pi*j = Pe*j+Pf*j Ур.3а
Можно вывести эксплуатационную характеристику и из изменения энергетического уровня, поскольку при определенных условиях она точно соответствует (см. ниже) "эффективному среднему давлению" или с учетом трения в двигателе "внутреннему среднему давлению" определенного цилиндра. Проведенные эксперименты показали, что влиянием крутильных колебаний (Eпот) можно пренебречь при определении изменения уровня энергии, причем только при повышенных оборотах возникают заметные отклонения от определенных кварцевыми приемниками давления опорных значений. В этом случае

При метрологическом методе "оценки энергетического уровня" на первом этапе измеряют






I(




где I0 момент инерции всех вращающихся деталей двигателя;
Iкол мнимая доля момента инерции для учета колеблющихся масс. При условии

или для j-го цилиндра





Для поршневого двигателя с n цилиндрами сумма всех колеблющихся масс с учетом соответствующего фазового положения коленчатого вала


где mкол колеблющаяся масса в каждом цилиндре;
r половинный ход;
l длина штока;





На фиг. 4 показан пример графика изменения уровня энергии по сравнению с измеряемыми обычным способом изменениями давления P в цилиндре опять-таки при пониженном (фиг. 4A) и повышенном (4B) числе оборотов. Работу отдельных цилиндров можно определять по различным характеристикам уровня энергии. При этом формирование разности может выполняться принципиально семью различными путями:
1. рассмотрение максимумов:
1а. разность между двумя последовательными относительными максимумами,
1б. разность между одним максимумом и значением уровня энергии, расположенным на 180o ранее,
1в. разность между одним максимумом и значением уровня энергии, расположенным на 180o позже,
2. рассмотрение минимумов:
2а. разность между двумя последовательными относительными минимумами,
2б. разность между одним минимумом и значением энергетического уровня, расположенным на 180o ранее,
2в. разность между одним минимумом и значением уровня энергии, расположенным на 180o позже,
3. сравнение значений уровня энергии в верхних мертвых точках. В то время как методы 1а-1в дали явно менее точные результаты, методы 2а-2в и 3 обладают примерно одинаковой точностью. Наилучшее соответствие достигается методом 2б. Упомянутые "смешанные средние давления" P*ej или P*ij можно представить следующим образом. Во время определения крутящего момента отдельного цилиндра, например цилиндра 1, остальные цилиндры 4-цилиндрового рядного двигателя (последовательность зажигания 1, 2, 4, 3) находятся в следующем положении:
сжатие цилиндр 2,
расширение цилиндр 1,
выталкивание цилиндр 3,
всасывание цилиндр 4. Все изменения давлений сообща влияют на вращение маховика. Измеренные изменения давлений цилиндра для этого примера представлены на фиг. 5 в виде диаграммы давление объем. Пунктиром показано изменение давления для общего цикла цилиндра 1. Область от S1 до Е1 означает начало и конец воздействия давления газа в цилиндре 1, область от S2 до Е2 начало и конец воздействия давления газа в цилиндре 2, от S4 до Е4 начало и конец воздействия давления газа в цилиндре 4 и от S3 до Е3 начало и конец воздействия давления газа в цилиндре 3. Буквой A обозначен ход расширения цилиндра 1, буквой B ход сжатия в цилиндре 2, буквой C ход выпуска цилиндра 3 и буквой D ход впуска в цилиндре 4. Можно видеть, что показанный пунктиром график для цилиндра 1 точно соответствует при газообмене соответствующим участкам графика для цилиндров 2, 3 и 4, за исключением мелких отклонений. Если бы они были абсолютно идентичны, значение P*i было равно Pi. Поэтому при рассматриваемом определении крутящего момента для каждого цилиндра с помощью метода уровня энергии исходили в соответствии с изобретением из того, что характеристика давления сжатия для всех цилиндров аналогична и что при газообмене не существует значительных различий между отдельными цилиндрами. Этот так называемый метод уровня энергии позволяет также определить при выбеге двигателя эффективное смешанное среднее давление (Pe*) каждого отдельного цилиндра в каждом цикле двигателя:
P*ej = P*ij-P*fj Ур.3а
При выбеге двигателя P*ij отрицательно и составляется в основном из потерь при газообмене и тепловых потерь на стенках во время высокого давления. В ходе определения трения двигателя можно определить P*ij для каждого цилиндра в форме точного соответствия определенному цилиндру в зависимости от числа оборотов двигателя и его температуры. С помощью этой информации можно определить изменение среднего давления трения P*fj при останове двигателя для двигателя в целом. Метод уровня энергии позволяет принципиально получить значение P*ej или M*e. Если в ходе остановки двигателя P*fj или M*fj определено в зависимости от числа оборотов, то при последующем форсированном режиме работы или на холостом ходу можно вычислить P*ij или M*ij:
M*ij= M*ej+M*fj Ур.3б
При этом снова пренебрегают зависимостью нагрузки от Mf, что в большинстве случаев допустимо. С помощью M*i можно затем оценить, например, количество впрыскиваемого топлива или влияние трения в двигателе. По изменению уровня энергии можно также образовать разность, представляющую часть работы сжатия или составляющую работу расширения цилиндра (например, фиг. 4A, амплитуда A). Если не происходит сгорания, то при выбеге двигателя по инерции эту меру можно с успехом использовать для сравнения сжатия в цилиндрах. Даже в случае сгорания можно по амплитуде B (фиг.4A) непрерывно проверять, выполняется ли условие более равномерного сжатия. Все сказанное до этого относится, в принципе, к ДВС, работающим без нагрузки. В ур. 1а, однако, уже учтен случай ДВС, работающего под нагрузкой с Wнагр. Измерения на нагруженных двигателях подтвердили, что характеристики


При этом в Eкин, конечно, нужно учитывать кинетическую энергию всей приводной цепочки. Потенциальную накопленную энергию можно учесть следующим образом:

В Eпот учитывают сумму Eпот h (обусловленную различным уровнем расположения колеблющихся масс) и Eпот c (еще не учитывающую энергию пружинного аккумулятора в упругих элементах двигателя):
Eпот Eпот h + Eпот c. Ур.7
Если доля уровня расположения колеблющихся масс существенна, то для поршневого двигателя с n цилиндрами в методе уровней энергии необходимо рассчитать

hj геодезическая высота центра тяжести колеблющихся масс в цилиндре j. Учет крутильных колебаний в ДВС или во всей приводной цепочке происходит предпочтительно путем разделения зависящего от угла момента инерции двигателя на от двух до бесконечного количества (n) частичных представительных моментов инерции, причем на каждом из этих мест k измеряют изменения








можно вычислить момент инерции I0 двигателя:

где I1 известный момент инерции дополнительной вращающейся массы;
Me эффективный крутящий момент всех цилиндров двигателя. С помощью статистических методов можно, повторив несколько раз (например, пять) это измерение, указать также диапазон, в котором находится истинный момент инерции двигателя с 95%-ной точностью. Возможная погрешность этого метода состоит при этом, однако, в том допущении, что крутящий момент двигателя как при быстром, так и при замедленном (с дополнительной вращающейся массой) разгоне имеет одну и ту же зависимость от числа оборотов. Несмотря на механическую блокировку регулирующих элементов топливного насоса высокого давления, зависящего от напора (муфта опережения впрыскивания и регулятор расхода по внешней скоростной характеристике), крутящий момент при замедленном разгоне, вероятно, несколько больше. Поэтому была выбрана следующая методика. Момент инерции и доверительную область определяли с тремя разными дополнительными вращающимися массами. Зависимость результатов от размера дополнительной массы экстраполировали по регрессионным прямым на величину дополнительной массы, равную 0. В соответствии с этим момент инерции рассматриваемого здесь в качестве примера двигателя со всеми вращающимися массами уменьшенный на число оборотов коленчатого вала и без сцепления составил с 95%-ной вероятностью от 0,293 до 0,3257 кгм2. Среднее значение составляет 0,3087 кгм2. Это среднее значение оказалось при моделировании

Формула изобретения





где I(


E(

5. Устройство для диагностики двигателя внутреннего сгорания, содержащее измерительную схему для непрерывного определения его эксплуатационных параметров и подключенный к ней вычислительный блок для оценки, упорядочивания и индикации результатов измерений, причем измерительная схема включает блок непрерывного измерения частоты вращения или угловой скорости коленчатого вала двигателя и соединенный с последним блок координации для приведения результатов измерений в соответствие с определенным угловым положением коленчатого вала, а вычислительный блок включает логический блок, с помощью которого определяется общая энергия двигателя при различных положениях коленчатого вала, и блок сравнения, в котором по результатам сравнения значений общей энергии определяются крутящие моменты или мощности отдельных цилиндров, отличающееся тем, что вычислительный блок дополнительно включает блок памяти, в который занесены значения эквивалентного момента инерции двигателя I(


6. Устройство по п.5, отличающееся тем, что для двигателей внутреннего сгорания с маховиком, установленным на одном конце коленчатого вала и имеющим зубчатый обод, в области последнего размещен датчик угловой скорости, взаимодействующий с зубьями, предпочтительно бесконтактный индуктивный датчик приближения, соединенный с блоком измерения частоты вращения. 7. Устройство по п.6, отличающееся тем, что на маховике дополнительно предусмотрен датчик верхней мертвой точки, соединенный с блоком координации. 8. Устройство по пп.5 7, отличающееся тем, что между блоком измерения частоты вращения или блоком координации и вычислительным блоком включен блок предварительной обработки сигнала измерения. 9. Устройство по пп.5 8, отличающееся тем, что диагностируемый двигатель внутреннего сгорания соединен с нагрузочным механизмом для приложения предпочтительно известной в каждом случае нагрузки. 10. Устройство по пп. 5 9, отличающееся тем, что оно снабжено приспособлением для определения изменений давления в отдельных цилиндрах двигателя, соединенным с вычислительным блоком.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6