Способ визуального определения дрейфовой подвижности в азидах тяжелых металлов
Использование: физическая химия твердого тела, для исследования амбиполярной подвижности в разлагающихся системах и для анализа чистоты материалов. Сущность изобретения: в способе визуального определения дрейфовой подвижности в азидах тяжелых металлов воздействуют на кристалл ультрафиолетовым излучением или постоянным электрическим полем или облучают быстрыми электронами, затем кристаллы помещают в электрическое поле с длительностью импульса 10-4 - 10-1с. Затем в одном кристалле проявляют металл, другой растворяют, определяют при этом диаметр и расстояние смешения от возбуждаемой области выделяемых пузырьков газа, величину дрейфовой подвижности расчитывают по формуле: где di и ri - диаметр и расстояние смещения i-го пузырька от центра возбуждаемой области (см),
n - время действия импульса (с), E - напряженность импульсного электрического поля (В/см), а - амбиполярную дрейфовую подвижность определяют визуально пространственным сопоставлением границ распространения металлического и газообразного продуктов. 1 табл.
Изобретение относится к области физико-химии твердого тела и может быть использовано для исследования амбиполярной подвижности в разлагающихся системах и для анализа чистоты материалов.
Известен способ определения подвижности инжектированного пакета носителей заряда в полупроводнике, имеющем форму тонкого и длинного стержня ("нитевидный" образец) Бонч-Бруевич В.Л. Физика полупроводников. М. Наука, 1977, с. 262-263. Избыточные носители создаются короткими импульсами напряжения в эмиттере и регистрируются коллектором. Если к торцам образца приложено внешнее напряжение, пакет инжектированных в эмиттере носителей движется к коллектору. Подвижность можно определить, измеряя время движения пакета, зная скорость пакета и поле внутри образца. Однако в данном случае измеряется электрический сигнал, который не на всех системах может быть измерен вследствие малого объемного заряда. Кроме того, для системы, в которой измеряется электрический сигнал, необходимы контакты, не вносящие дополнительных полей, что достаточно трудно осуществить экспериментально. При регистрации амбиполярной подвижности, с помощью электрического сигнала, в контактных системах сигнал может быть меньше уровня чувствительности прибора, вследствие сильной компенсации объемных зарядов. Наиболее близким является способ измерения подвижности электронов Хейнсома и Шокли К.Миз -Т.Джеймс, Теория фотографического процесса. Л. Химия, 1979, с. 101. Кристалл хлорида серебра зажимают между пластинками конденсатора и часть его экспонируют через полупрозрачную проводящую щель в одном из электродов. В случае действия сильно поглощаемого ультрафиолетового излучения потемнение ограничено приповерхностной областью. Если конденсатор зарядить до высокой разности потенциалов и создать сильное электрическое поле внутри кристалла, то фотоэлектроны, освобождаемые вблизи поверхности, будут смещаться полем внутрь кристалла. Это приводит к такому же смещению области потемнения и, наглядно демонстрируя отложение фотолитического серебра там, где происходит захват электронов, дает возможность определить подвижность электронов. Однако данным способом невозможно определить тип измеряемой подвижности. Отсутствие четкой границы образования металла, в связи с неравномерностью поглощения света по толщине образца, требует дополнительного фотометрирования. Предлагаемым изобретением решается задача визуального определения амбиполярной подвижности электронно-дырочной составляющей проводимости, которая в настоящее время не решена. Поставленная задача решается способом визуального определения дрейфовой подвижности в азидах тяжелых металлов, включающим воздействие на два нитевидных кристалла ультрафиолетового излучения или постоянного электрического поля, или облучение быстрыми электронами, последующее действие электрического поля с длительностью импульса 10-4 10-1c, после чего в одном кристалле проявляют металл, другой растворяют, определяют диаметр и расстояние смещения от возбуждаемой области выделяемых пузырьков газа, рассчитывают величину дрейфовой подвижности по формуле:





Дрейфовую подвижность рассчитывают по формуле:

Направление смещения электронной составляющей на втором кристалле определяют с помощью одного из методов проявления металла. Сопоставляют результаты полученные на двух кристаллах, находят, что область потемнения и область, занимаемая пузырьками совпадают пространственно. Примеры конкретного выполнения:
Пример 1. Два нитевидных кристалла азида свинца, наклеенных на подложку, локально облучают на установке Мира 2Д, с параметрами: энергия электронов 0,18 МэВ, длительность импульса 30 нс, скважность 0,1 с. После облучения кристаллы помещают в бесконтактное электрическое поле, подают прямоугольный импульс с длительностью 10-2 c. Один кристалл в течении 5 мин выдерживают при температуре 90oC. Второй растворяют под микроскопом в 0,2 N водном растворе ацетата натрия. Замеряют объем и пространственное положение i пузырька газа (результаты сведены в таблицу). Сравнивают положение области потемнения на первом кристалле и области, занимаемой газообразным продуктом, отмечено их совпадение. Расчет подвижности проводят по формулам (1) и (2), получено




Формула изобретения

где di, ri диаметр и расстояние смещения i-го пузырька от центра возбуждаемой области, см;

Е напряженность импульсного электрического поля, В/см,
и визуально определяют амбиполярную дрейфовую подвижность пространственным сопоставлением границ распространения металлического и газообразного продуктов.
РИСУНКИ
Рисунок 1