Алифатические кетимины глицидиловых эфиров поли (оксипропилен)гликолей и способ их получения
Использование: для получения антикоррозионных покрытий с высокими защитными и декоративными свойствами. Алифатические кетимины глицифиловых эфиров поли/оксипропилен/гликолей имеют структурную формулу: n = 0 - 7, m = 2 - 3. Алифатические кетимины получают взаимодействием глицидиловых эфиров поли/оксипропилен/гликолей с аммиаком в среде кетона при 25 - 75oC в автоклаве при давлении не более 3,0 кгс/см2 и массовом соотношении глицидилового эфира поли/оксипропилен/гликоля и кетона 1 : (0,5 - 1,5). Алифатические кетимины по изобретению применяют в качестве отвердителей эпоксидных смол. Отвержденные смолы дают глянцевые прозрачные покрытия высокой эластичности. 2 с.п. ф-лы.
Изобретение относится к синтезу новых соединений кетиминного типа, применяемых в качестве олигомерных отвердителей эпоксидных смол, рекомендуемых для получения антикоррозионных покрытий с высокими защитными и декоративными свойствами.
Известны олигомерные отвердители эпоксидных смол аминного типа-алифатические полиамины и низкомолекулярные олигоамиды с концевыми аминогруппами, позволяющие получать защитные покрытия в естественных условиях [1] Однако высокая активность таких отвердителей приводит к низкой стабильности композиций на их основе, что не всегда удобно в эксплуатации. Кроме того, полиэтиленполиамины формируют при естественном отверждении мутные, липкие покрытия, что обусловлено образованием карбонатов аминов на воздухе. Перспективный путь решения этих проблем блокировка первичных аминогрупп отвердителя кетонами с образованием кетиминов, тормозящая взаимодействие реагентов и в предельном варианте позволяющая получать однокомпонентные составы. Регенерация функциональной группы происходит под влиянием влаги воздуха при изготовлении покрытия. Таким образом, использование кетиминных отвердителей дает возможность получать глянцевые антикоррозионные эпоксидные покрытия с высокими защитными свойствами при их нанесении и отверждении в условиях высокой влажности воздуха. Возможными областями применения таких покрытий может быть защита от воздействия высокой влажности и воды, в том числе минерализованной и морской, гидротехнических сооружений, водоводов, аппаратуры, шахтных металлоконструкций, а также использование их в ремонтных целях на электростанциях, включая атомные [2] Ближайшим по технической сущности к предложенному решению является способ получения отвердителя эпоксидных смол кетиминного типа, описанный в [3] Указанный способ заключается в пропускании газообразного аммиака через 33 - 50%-ный раствор низкомолекулярной эпоксидной смолы в смеси кетона и бутанола или этилцеллозольва при их массовом отношении 1 (1 2) и массовом соотношении в эпоксидной смолы и кетона 1 (0,5 1,0). В этих условиях продуцированная взаимодействием эпоксида в аммиаком первичная аминогруппа блокируется кетоном с образованием олигомерного кетимина. Полученные таким образом отвердители эпоксидных смол по сравнению с аминными менее токсичны, покрытия на их основе имеют хорошие защитные и физико-механические свойства. Однако, процесс синтеза по способу [3] проходит только при введении в реакционную массу, кроме кетона, протонодонорного растворителя. При пропускании через реакционную массу избытка аммиака возникает необходимость улавливания его, что затрудняется одновременным уносом растворителя и кетона, и ограничивает проведение синтеза при нагревании. Поэтому по известному способу процесс ведут обычно при 20 40oC от 5 7 ч до нескольких суток. Кроме того, кетимины на основе ароматических эпоксисмол являются твердыми веществами с температурой размягчения 38 55oC и поэтому при использовании их в качестве отвердителя требуется значительное количество растворителя [4] Все это ограничивает возможности известного способа и применение полученного кетиминного отвердителя. Технической задачей изобретения является создание алифатических кетиминов новой химической структуры, используемых в качестве отвердителей эпоксидных смол и позволяющих получать высокоэластичные антикоррозионные покрытия с прекрасными декоративными свойствами. Поставленная задача решается тем, что получены новые алифатические кетимины глицидиловых эфиров поли(оксипропилен) гликолей общей формулы:
позволяет вести процесс в автоклаве при заданном избытке аммиака, тем самым открывая возможности для интенсификации процесса за счет повышения температуры. Химические реакции, происходящие при получении алифатических кетиминов глицидиловых эфиров поли(оксипропилен) гликолей, могут быть представлены следующей схемой:

При взаимодействии эпоксидной группы с аммиаком продуцируется первичная аминогруппа, которая блокируется кетоном и тем самым препятствует реакции гелеобразования по схеме:

В качестве алифатического глицидилового эфира поли(оксипропилен) гликоля используют:
Лапроксид 603

Лапроксид 502

Лапроксид 202

Использование глицидиловых эфиров поли(оксипропилен)гликолей с 2 > m <3 нецелесообразно, так как в первом случае (m 1) аминное число полученного по предлагаемому способу кетиминного отвердителя будет слишком низким, и следовательно, процесс отверждения затруднен, а в случае (m > 3) вязкость отвердителя будет слишком высокой, что также создает неудобства в его эксплуатации. Кроме того, ограничен и ассортимент стартовых веществ для производства глицидиловых эфиров поли(оксипропилен) гликолей с m > 3. Количество оксипропиленовых звеньев (n) может изменяться в зависимости от требуемых свойств кетиминных отвердителей (вязкость, аминное число) и покрытий на его основе в пределах от 0 до 7. В случае m 2 3 и n > 7 растет вязкость, снижается аминное число полученного отвердителя, что приводит к ухудшению эксплуатационных характеристик покрытий на его основе. В качестве кетохна, чаще всего, используют наиболее доступные ацетон (R2= CH3-, R3=CH3-) и метилэтилкетон, (R2=CH3-, R3=C2H5-), обладающие необходимой по отношению к первичной аминогруппе блокирующей способность, обеспечивающей достаточную степень блокировки, а при получении покрытий достаточную скорость взаимодействия аминогруппы с эпоксидом. Изобретение иллюстрируется примерами:
Пример 1. 30 кг Лапроксида 603 (n 4,8, m 3,0) перемешивают с 30 кг ацетона (массовое соотношение 1 1) и обрабатывают при 30 50oC и давлении 1,5 2,5 кгс/см2 газообразным аммиаком до 100%-й конверсии по эпоксидным группам. Затем вакуумируют при (50 + 5)oC в течение (0,5 1,5 ) ч, получают 56 кг прозрачного темножелтого продукта с вязкостью 1230 мПа





Формула изобретения

где

R2 CH3 -;
R3 C2H5 -, CH3 -;
n 0 7;
m 2 3,
в качестве отвердителей эпоксидных смол. 2. Способ получения алифатических кетиминов глицидиловых эфиров поли(оксипропилен)гликолей по п. 1, заключающийся во взаимодействии глицидиловых эфиров поли(оксипропилен)гликолей с аммиаком в среде кетона при 25 75oС в автоклаве при давлении не более 3,0 кгс/см2 и массовом соотношении глицидилового эфира поли(оксипропилен)гликоля и кетона 1 (0,5 - 1,5).
РИСУНКИ
Рисунок 1