Катализатор для получения серы по процессу клауса и способ его приготовления
Изобретение относится к катализаторам для получения серы по процессу Клауса и способам их приготовления. Катализатор содержит в своем составе, мас.%: 15 - 25 CaSO4, 5 - 10 CaO и 65 - 80 твердого раствора оксидов титана, ниобия и тантала, описываемого формулой Ti(NbxTa0,06x)O(2+2,5x), где 0,0015 x
0,07. Катализатор получают обработкой водного раствора, содержащего рассчитанные количества тетрахлорида титана, пентахлорида ниобия, пентахлорида тантала и сульфата титанила или серной кислоты суспензией гидроксида кальция, взятого в определенном избытке по отношению к стехиометрически необходимому для связывания хлор- и сульфат-ионов, с последующими стадиями отделения катализаторной массы, ее промывки от хлорида кальция, отделения осадка фильтрацией, формования, сушки и прокаливания. Технический результат изобретения заключается в более высокой активности предлагаемого катализатора в гидролизе сероорганических соединений по сравнению с прототипом и упрощении способа приготовления катализатора за счет резкого сокращения количества технологических операций и исключения выбросов в окружающую среду оксидов азота. 2 с.п. ф-лы, 1 табл.
Изобретение относится к неорганической химии, в частности к катализаторам и способам их приготовления, и может быть использовано в газоперерабатывающей промышленности.
Известен титаноксидный катализатор, полученный из орто- и метатитановых кислот или оксигидроксида титана. Недостатком известного катализатора является невысокая гидролизная активность. Так, конверсия одноуглеродных серусодержащих соединений (CS2 и COS) при 300oC и времени контакта 4 с не превышает 28% /1/. Известен способ получения катализатора для процесса Клауса путем термического гидролиза аммоний-титания сульфата при рН 0,8 1,2 и рН 1,8 - 2,2, отделения полученных осадков фильтрацией, их промывки и смешения в массовом отношении 7,5 9,0:2,5 1,0 /2/. Полученный катализатор проявляет достаточно высокую активность в реакции окисления сероводорода диоксидом серы, но не катализирует гидролиз CS2 и COS. Известен способ каталитического окисления сероводородсодержащего газа с суммарной объемной долей CS2 и COS не более 3% заключающийся в пропускании очищаемого газа в смеси с регулируемым количеством воздуха через слой катализатора, состоящего из диоксида титана 60 99 мас. и сульфата кальция 1 40 мас. Катализатор готовят последовательной пропиткой сформованного диоксида титана растворами, содержащими сульфат-анион и катион щелочноземельного элемента /3/. Недостатком известного способа является недостаточно высокая активность используемого катализатора в гидролизе сероорганических соединений. При температуре 298oC и времени контакта 4 с превращение сероорганических компонентов составляет не более 70% Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому техническому решению является катализатор, содержащий 65,0 - 98,5 мас. диоксида титана и 1,5 35,0 мас. сульфата щелочноземельного элемента, выбранного из группы кальций, стронций, барий /4/ (прототип). Способ его приготовления заключается в получении титановой кислоты обработкой тетрахлорида титана водным раствором щелочного агента, отделения осадка, промывке водой (или без промывки), сушке при 110oC в течение 24 ч, перемешивании полученного порошка в течение 30 мин с водой и карбоксиметилцеллюлозой, экструзии этой смеси, сушке экструдата при 110oC в течение 8 ч, прокаливании при 450 500oC в течении 2 7 ч, пропитке продукта раствором сульфата аммония или серной кислоты, сушке в течение 4 ч при 100oC, повторной пропитке нитратом щелочноземельного элемента, сушке при 110oC в течение 4 12 ч и прокаливании при 450oC в течение 1 2 ч. Вариантом способа является использование в качестве исходного сырья суспензии титановой кислоты, полученной после сернокислотного гидролиза ильменита. Недостатком известного /4/ (прототип) катализатора является недостаточно высокая гидролизная активность. Так, конверсия сероуглерода при 300oC и времени контакта 0,25 с составляет 48% Недостатками способа приготовления катализатора является многостадийность и сложность технологии, наличие выбросов в атмосферу оксидов азота, количество которых составляет около 100 кг на 1 т катализатора, а также большие затраты энергии на многократные стадии сушки и прокаливания катализаторной массы. Технической задачей изобретения является создание катализатора для получения серы по процессу Клауса, обладающего повышенной гидролизной активностью, и способом его приготовления, позволяющим упростить технологию приготовления, а также устранить образование и выбросы в атмосферу оксидов азота. Техническая задача решается заявляемым катализатором и способом его приготовления. В соответствии с технической задачей заявляется катализатор для получения серы по процессу Клауса, содержащий оксидный компонент и сульфат кальция, отличающийся тем, что в качестве оксидного компонента катализатор содержит твердый раствор оксидов титана, ниобия и тантала, имеющий состав Ti(NbxTa0,06x)O(2+2,5x), где 0,0015







совмещение этого процесса с осаждением сульфата кальция путем взаимодействия сульфата титанила или серной кислоты с суспензией гидроксида кальция, как реагента, содержащего катион щелочноземельного элемента, указанные отличительные признаки позволяют получить катализаторную массу в одну стадию. Способ приготовления катализатора заключается в следующем. В реактор загружают рассчитанное количество суспензии гидроксида кальция, взятого в определенном избытке, чтобы в готовом катализаторе содержалось 5 10 мас. оксида кальция, и при перемешивании добавляют водный раствор, содержащий рассчитанные количества TiCl4, NbCl5, TaCl5, а также TiOSO4 или H2SO4. При взаимодействии тетрахлорида титана, пентахлоридов ниобия и тантала с Ca(OH)2 образуются титановая, ниобиевая и танталовая кислоты, выпадающие в осадок, и CaCl2, растворяющийся в маточнике. В результате взаимодействия сульфата титанила или серной кислоты с Ca(OH)2 образуется сульфат кальция, выпадающий в осадок. При использовании сульфата титанила наряду с образованием сульфата кальция образуется стехиометрическое количество титановой кислоты. Количество TiCl4, NbCl5 и TaCl5, а также TiOSO4 при его использовании в качестве соединения, содержащего сульфат-анион, берут из расчета, чтобы соотношение TiO2:Nb2O5:Ta2O5 в твердом растворе было в пределах (89,0 99,78):(0,2 10,0): (0,02 1,0) соответственно. Полученную катализаторную массу, содержащую сульфат кальция, гидроксид кальция, титановую, ниобиевую и танталовую кислоты, отделяют фильтрацией, пpомывают водой для удаления хлорида кальция, осадок отделяют фильтрацией, добавляют раствор карбоксиметилцеллюлозы (КМЦ) из расчета 0,5 1,0 мас. КМЦ на прокаленный катализатор, подсушивают и формуют в виде экструдатов, сушат при 110 120oC в течение 2 ч и прокаливают при 450oC в течение 4 ч. При совместном осаждении титановой, ниобиевой и танталовой кислот по описанному способу происходит равномерное распределение ниобиевой и танталовой кислот в титановой. Последующие стадии сушки и прокаливания приводят к формированию твердого раствора оксидов титана, ниобия и тантала, обладающего повышенной активностью в гидролизе сероорганических соединений. Наличие в составе катализатора 5 10 мас. оксида кальция, образующегося из гидроксида кальция при прокаливании катализатора, усиливает основные свойства последнего, что также повышает гидролизную активность. Активность синтезированных образцов катализатора определяют в реакции гидролиза сероуглерода и в реакции Клауса (окисление сернистого водорода диоксидом серы) на микроимпульсной установке с хроматографическим анализом продуктов реакции. Для проведения опытов навеску катализатора (0,05 0,1 г) с размером зерна 0,25 0,50 мм помещают в стальной микрореактор длиной 70 мм и диаметром 3 мм и прогревают в токе гелия при 300oC в течение 1 ч. При исследовании гидролизной активности катализаторов в реактор микрошприцем вводят смесь жидкостей CS2:H2O 1:2. При исследовании активности катализаторов в реакции Клауса в реактор вводят смесь газов H2S:SO2 2:1. Время контакта реагентов с катализатором составляет 0,05 0,25 с, температура в зоне реакции 300oC и 220oC соответственно для реакций гидролиза сероуглерода и окисления сернистого водорода диоксидом серы. Активность катализаторов выражается в виде константы скорости реакции, рассчитанной по уравнению Хебгуда и Бассета /J. Phys. Chem. 1960, v.64, p. 769/. Значение константы скорости реакции рассчитывают как среднее из пяти измерений. Пример 1. В реактор загружают 1330 мл 10%-ной суспензии гидроксида кальция и при перемешивании добавляют 400 мл водного раствора, содержащего 140,5 г тетрахлорида титана, 3,0 г пентахлорида ниобия, 0,13 г пентахлорида тантала и 23,5 г сульфата титанила. Полученную катализаторную массу отделяют фильтрацией, промывают водой для удаления хлорида кальция, осадок отделяют фильтрацией, смешивают с 10 мл 10%-ного раствора карбоксиметилцеллюлозы, подсушивают до содержания влаги 40 60 мас. формуют в виде экструдатов, сушат при 110 120oC в течение 2 ч и прокаливают при 450oC в течение 4 ч. Получают катализатор, содержащий мас. 20,0 CaSO4, 7,5 CaO и 72,5 твердого раствора оксидов металлов состава Ti(Nb0,21Ta0,012)O2,06 при соотношении оксидов титана, ниобия и тантала, равном 97,83:2,06:0,11. Пример 2. Катализатор готовят аналогично описанному в примере 1 с той разницей, что в реактор загружают 1350 мл 10%-ной суспензии гидроксида кальция и добавляют 600 мл водного раствора, содержащего 150,7 г тетрахлорида титана, 5,54 г пентахлорида ниобия, 0,23 г пентахлорида тантала и 13,7 г сульфата титанила. Получают катализатор, содержащий, мас. 20,0 CaSO4, 7,0 CaO и 73,0 твердого раствора оксидов металлов состава Ti(Nb0,039Ta0,002)O2,10 при соотношении оксидов титана, ниобия и тантала, равном 96,0:3,74:0,19. Пример 3. Катализатор готовят аналогично описанному в примере 1 с той разницей, что в реактор загружают 1425 мл 10%-ной суспензии гидроксида кальция и добавляют 500 мл водного раствора, содержащего 137,6 г тетрахлорида титана, 15,23 г пентахлорида ниобия, 1,22 г пентахлорида тантала и 17,7 г сульфата титанила. Получают катализатор, содержащий, мас. 15,0 CaSO4, 10,0 CaO и 75,0 твердого раствора оксидов металлов состава Ti(Nb0,07Ta0,004)O2,19 при соотношении оксидов титана, ниобия и тантала, равном 89,0:10,0:1,0. Пример 4. Катализатор готовят аналогично описанному в примере 1 с той разницей, что в реактор загружают 1205 мл 10%-ной суспензии гидроксида кальция и добавляют 530 мл водного раствора, содержащего 130 г тетрахлорида титана, 0,28 г пентахлорида ниобия, 0,023 г пентахлорида тантала и 29,4 г сульфата титанила. Получают катализатор, содержащий, мас. 25,0 CaSO4, 5,0 CaO и 70,0 твердого раствора оксидов металлов состава Ti(Nb0,0015Ta0,00009)O2,01 при соотношении оксидов титана, ниобия и тантала, равном 99,78:0,20:0,02. Пример 5. Катализатор готовят аналогично описанному в примере 1 с той разницей, что в реактор загружают 1410 мл 10%-ной суспензии гидроксида кальция и добавляют 675 мл водного раствора, содержащего 145 г тетрахлорида титана, 16,69 г пентахлорида ниобия, 1,46 г пентахлорида тантала и 10,0 г сульфата титанила. Получают катализатор, содержащий, мас. 13,5 CaSO4, 10,5 CaO и 76,0 твердого раствора оксидов металлов состава Ti(Nb0,074Ya0,004)O2,20 при соотношении оксидов титана, ниобия и тантала, равном 88,51:10,31:1,18. Пример 6. Катализатор готовят аналогично описанному в примере 1 с той разницей, что в реактор загружают 1205 мл 10%-ной суспензии гидроксида кальция и добавляют 450 мл водного раствора, содержащего 130 г тетрахлорида титана, 0,19 г пентахлорида ниобия, 0,016 г пентахлорида тантала и 30,0 г сульфата титанила. Получают катализатор, содержащий, мас. 26,5 CaSO4, 4,5 CaO и 69,0 твердого раствора оксидов металлов состава Ti(Nb0,012Ta0,00007)O2,01 при соотношении оксидов титана, ниобия и тантала, равном 99,83:0,155:0,015. Пример 7. Катализатор готовят аналогично описанному в примере 1 с той разницей, что добавляемый в суспензию гидроксида кальция водный раствор содержит 16,9 г 85%-ной серной кислоты вместо 23,5 г сульфата титанила, а содержание в нем тетрахлорида титана составляет 168,6 г. Получают катализатор, содержащий, мас. 20,0 CaSO4, 7,5 СаО и 72,5 твердого раствора оксидов металлов состава Ti(Nb0,21Ta0,012)O2,06 при соотношении оксидов титана, ниобия и тантала, равном 97,83:2,06:0,11. Пример 8. Катализатор готовят аналогично описанному в примере 2 с той разницей, что добавляемый в суспензию гидроксида кальция водный раствор содержит 9,9 г 85% -ной серной кислоты вместо 13,7 г сульфата титанила, а содержание в нем тетрахлорида титана составляет 167,1 г. Получают катализатор, содержащий, мас. 20,0 CaSO4, 7,0 СаО и 73,0 твердого раствора оксидов металлов состава Ti(Nb0,039Ta0,002)O2,10 при соотношении оксидов титана, ниобия и тантала, равном 96:3,74:0,19. В таблице приведен состав, характеристика и активность в гидролизе сероуглерода катализаторов, приготовленных по описанному способу и прототипу (титаноксидный катализатор марки CRS-31 фирмы Рон-Пуленк, Франция). Данные таблицы показывают, что образцы катализатора, полученные по описанному способу, обладают значительно более высокой гидролизной активностью по сравнению с прототипом. Так, константа скорости реакции гидролиза сероуглерода на предлагаемом катализаторе в 1,5 1,8 раза выше (опыты 1 4, 7 8) по сравнению с известным катализатором. Все образцы катализатора, приготовленные описанным способом, обладают высокой активностью в реакции Клауса, обеспечивая выход целевого продукта, близкий к термодинамически равновесному, а также высокой термостабильностью (после прогрева катализаторов при температуре 800oC в течение 8 ч активность практически не снижается). Приготовленные по описанному способу образцы катализаторной пасты обладают высокой пластичностью, поэтому при формовании катализатора получаются гладкие экструдаты, которые после сушки и прокаливания обладают достаточно высокой механической прочностью при относительно низкой насыпной массе (0,74
0,88 кг/л). Предлагаемый способ приготовления катализатора по сравнению с прототипом позволяет упростить технологию промышленного производства, снизить стоимость катализатора за счет резкого сокращения количества технологических операций, в частности, сокращения числа и продолжительности стадий сушки и прокаливания, связанных с большими затратами энергии, а также исключить образование и выбросы оксидов азота в окружающую среду. Использование предлагаемого катализатора в газоперерабатывающей промышленности позволит за счет высокой гидролизной активности увеличить выход газовой серы и сократить выбросы диоксида серы в окружающую среду, поскольку CS2 и COS, не подвергающиеся реакции гидролиза, поступают с хвостовыми газами установок Клауса в термическую печь, где сжигаются с образованием SO2. Изложенное выше обуславливает получение технического результата, включающего создание катализатора и способа его приготовления. Технический результат изобретения заключается в более высокой активности предлагаемого катализатора в гидролизе сероорганических соединений по сравнению с прототипом и упрощении способа приготовления катализатора за счет резкого сокращения количества технологических операций и исключения выбросов в окружающую среду оксидов азота.
Формула изобретения



Оксид кальция 5 10
Твердый раствор оксидов титана, ниобия и тантала, соответствующий составу Ti(Nbx



2. Способ приготовления катализатора для получения серы по процессу Клауса, включающий получение титановой кислоты обработкой тетрахлорида титана водным раствором щелочного агента, обработку соединения, содержащего сульфат-анион, реагентом, содержащим катион щелочноземельного элемента с получением сульфата щелочно-земельного элемента, формование, сушку и прокаливание, отличающийся тем, что дополнительно с получением титановой кислоты и сульфата щелочноземельного элемента получают ниобиевую и танталовую кислоты путем одновременной обработки водного раствора тетрахлорида титана, пентахлорида ниобия, пентахлорида тантала и сульфата титанила или серной кислоты суспензией гидроксида кальция, взятого из расчета, чтобы в готовом катализаторе содержалось 5 10 мас. оксида кальция, количества тетрахлорида титана, пентахлорида ниобия, пентахлорида тантала и сульфата титанила берут из расчета, чтобы соотношение оксидов титана, ниобия и тантала в твердом растворе было в пределах 89,0 99,78 0,2 10,0 0,02 1,0 соответственно, и процесс ведут при соотношении компонентов, обеспечивающих следующее содержание в катализаторе, мас. Сульфат кальция 15 25
Оксид кальция 5 10
Твердый раствор оксидов титана, ниобия и тантала, соответствующий составу Ti(Nbx



РИСУНКИ
Рисунок 1