Способ газофазного химического фрезерования оксидных материалов
Изобретение относится к термохимической обработке материалов. Изобретение позволит повысить прецизионность изготовления деталей при сохранении электрофизических свойств материала. Сущность изобретения: проводят процесс термообработки в две стадии. Первая проводится в кассете, содержащей графит, расположенный на расстоянии 2 - 20 мм от заготовки и при температуре 1200 - 1800oC и вакууме 110-3 - 1
10-1 мм рт. ст. Вторая стадия проводится в атмосфере, содержащей кислород в количестве, более или равном 5% объема, и при температуре от 1300oC до температуры плавления материала заготовки.
Изобретение относится к способам химической обработки оксидных материалов и может быть использовано для изготовления прецизионных изделий, вытравливания отверстий различного профиля, рельефного травления поверхности и изготовления изделий сложного профиля из корундовых материалов.
Известен способ газофазного химического фрезерования жаростойких оксидных материалов (Al2O3, SiO2, MgO, Al2MgO4), отличающийся тем, что маскирующий элемент, предварительно выполненный из материала, температура плавления которого выше 1500oC, но ниже чем у фрезеруемого материала, например титана, вольфрама, циркония или гафния, плотно накладывают на фрезеруемый материал и нагревают полученную таким образом сборку до температуры в диапазоне от 1500oC до точки плавления материала маскирующего элемента. Нагрев осуществляют в инертной газовой среде, содержащей водород, в течение времени, достаточного для химического воздействия на участок поверхности фрезеруемого материала, расположенного под маскирующим элементом [1] Недостатками данного способа являются недостаточно высокая прецизионность из-за высокой температуры проведения процесса и низкая скорость пресса. Известен способ термохимической обработки корундовых материалов при 1000 1300oC в потоке продуктов разложения соединений фтора, в котором с целью увеличения скорости травления в качестве соединения фтора используют фтористый кадмий [2] Использование соединений фтора позволило снизить температуру процесса, а следовательно, увеличить прецизионность, однако при использовании фтористого кадмия не обеспечивается сохранение электрофизических параметров. Наиболее близким техническим решением является способ химического фрезерования заготовок из корунда, включающий экранировку необрабатываемой части заготовки в рабочую зону графитовой печи и термообработку при температуре 1900oC, в вакууме 5


Формула изобретения
Способ газофазного химического фрезерования оксидных материалов, включающий локальное экранирование материала заготовки и термообработку в вакууме, в контейнере по крайней мере частично, выполненном из углерода, при непрерывном откачивании газов, отличающийся тем, что заготовку в контейнере размещают так, чтобы расстояние поверхности заготовки, подвергаемой травлению, от поверхности графита было равно 2 oC 20 мм, термообработку проводят в две стадии, причем первую стадию осуществляют при 1200 1800oС и вакууме, равном 1,33 х 10-1 1,33 х 101 Па, а вторую стадию осуществляют вне контейнера при от 1300oС до температуры плавления материала заготовки, в атмосфере содержащей кислород в количестве не менее 5% объема, в течение 0,05 oC 48 ч.