Спектроскоп
Изобретение относится к технической физике, а именно к оптическим спектральным приборам и может быть использовано для спектрального анализа различных материалов. Сущность заключается в том, что спектроскоп состоит из канала излучения, включающего оптически связанные входную щель, вогнутое сферическое зеркало, плоскую дифракционную решетку и выходное окно, и канала шкалы, включающего шкалу длин волн, плоское зеркало и вогнутое сферическое зеркало, которое через зону прозрачности плоской дифракционной решетки оптически связано с выходным окном. 1 з. п. ф-лы, 3 ил.
Изобретение относится к технической физике, а именно к оптическим спектральным приборам и может быть использовано для спектрального анализа различных материалов.
Известен спектроскоп, состоящий из линзы, в фокусе которой помещается щель, и призмы. При освещении щели исследуемым источником света через призму видно на бесконечности мнимое цветное изображение щели [1] Разрешающая способность такого спектроскопа при достаточно узкой щели ограничивается свойствами глаза. Приняв, что наименьшее угловое расстояние между двумя линиями, различными глазом составляет 1', то для призмы из стекла ТФ1 с преломляющим углом 60o предел разрешения спектроскопа в соответствии с [1] для длины волны 486,1 нм составит 0,8 нм. В красной части спектра, где дисперсия призмы резко падает, разрешение еще ниже. Изменение дисперсии призмы также сказывается на неравномерности шкалы длин волн, что создает определенные неудобства для оператора при отсчете длин волн. Из уровня техники известен спектроскоп видимого диапазона [2] состоящий из корпуса, щелей и дисперсионного элемента в виде голографической асимметричной сетки, укрепленной в окошке в косой стенке, отклоненной по отношению к лицевой стенке корпуса на угол, величина которого зависит от плотности сетки. Недостатками этого аналога являются несовпадение осей визирования на источник излучения и наблюдения спектра, а также отсутствие шкалы длин волн. Ближайшим аналогом к изобретению является спектроскоп [3] состоящий из канала объекта, включающего оптически связанные и последовательно расположенные входную щель, установленную с возможностью перемещения вдоль оптической оси, первую линзу, призму прямого зрения Амичи и выходное окно, и канала шкалы, включающего оптически связанные и последовательно расположенные шкалу длин волн, установленную с возможностью перемещения вдоль оптической оси, вторую линзу, поворотную призму и третью линзу, оптически связанную с последней гранью призмы прямого зрения Амичи канала объекта. В этом спектроскопе излучение через входную щель, находящуюся в фокусе первой линзы, проходит эту линзу и параллельным пучком падает на призму прямого зрения Амичи. Разложенное в спектр излучение рассматривается глазом через окно. Одновременно наблюдается на бесконечности мнимое изображение шкалы длин волн, образованное второй и третьей линзами и совмещенное с цветным изображением щели с помощью поворотной призмы и последней грани призмы прямого зрения Амичи. Для удобства экспертизы в связи с малым количеством экземпляров источника литературы на фиг. 3 приведена оптическая схема ближайшего аналога. Диоптрийная наводка на резкость спектра и шкалы производится раздельно перемещением входной щели и шкалы длин волн вдоль соответствующих оптических осей. К недостаткам данного спектроскопа можно отнести: низкое спектральное разрешение в длинноволновой части видимой области спектра (не разрешается желтый дуплет натрия); неравномерная шкала длин волн; сравнительно большая масса прибора из-за обилия призм и линз и длина прибора из-за последовательно установленных на одной оптической оси всех элементов схемы; раздельное перемещение входной щели и шкалы длин волн для наводки на резкое изображение. Техническая задача, которая решалась при создании изобретения, заключается в разработке конструкции спектроскопа, обладающего улучшенными техническими и эксплуатационными характеристиками. Технический результат от использования изобретения заключается в повышении спектрального разрешения в длинноволновой части видимой области спектра и в получении равномерной шкалы длин волн. Дополнительный технический результат заключается в уменьшении массы и размеров спектроскопа и упрощении настройки спектроскопа под индивидуальный глаз наблюдателя. Этот технический результат достигается тем, что спектроскоп, состоящий из канала излучения, включающего входную щель и выходное окно, входная щель установлена с возможностью перемещения вдоль оптической оси канала излучения, и канала шкалы, включающего шкалу длин волн, установленную с возможностью перемещения вдоль оптической оси канала шкалы, канал излучения дополнительно включает вогнутое сферическое зеркало и плоскую дифракционную решетку, канал шкалы дополнительно включает плоское зеркало и вогнутое сферическое зеркало, причем радиусы кривизны вогнутых сферических зеркал в обоих каналах одинаковы, плоская дифракционная решетка выполнена с зоной прозрачности, в канале излучения входная щель расположена в фокусе вогнутого сферического зеркала, оптически связанного через плоскую дифракционную решетку с выходным окном, угол падения лучей от вогнутого сферического зеркала на плоскую дифракционную решетку составляет


где lср средняя длина волны оптического диапазона спектроскопа, равная для видимой части спектра (400oC700):2=550 нм,

Формула изобретения

где lср средняя длина волны оптического диапазона спектроскопа, нм,

а в канале шкалы шкала длин волн, плоское зеркало и вогнутое сферическое зеркало оптически связаны и расположены последовательно, причем шкала длин волн находится в фокусе вогнутого сферического зеркала канала шкалы, которое через зону прозрачности плоской дифракционной решетки оптически связано с выходным окном, а перемещение вдоль оптических осей входной щели и шкалы длин волн выполнено общим. 2. Спектроскоп по п. 1, отличающийся тем, что в плоской дифракционной решетке отношение площади зоны прозрачности к площади отражающей зоны составляет (0,02 0,2).
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3