Способ дистанционного обнаружения ядерных зарядов
Использование: исследование материалов радиационными методами, в частности, контроль ядерно-взрывных материалов. Сущность изобретения: способ включает определение вблизи обследуемого объекта интенсивности потока гамма-излучения в диапазоне 1,5-2,0 МэВ. Дополнительно определяют интенсивность потока гамма-излучения вблизи 10,83 МэВ, устанавливают фоновое излучение в отмеченных интервалах, находят соотношение измеренных величин, по наличию заряда судят по соответствующему неравенству.
Изобретение относится к области исследования материалов радиационными методами и может быть применено в области мирного контроля за соблюдением международных соглашений.
Известен способ дистанционного обнаружения ядерных зарядов, включающий облучение обследуемого объекта потоком электронов и регистрацию потока нейтронов от объекта (1). Недостатками способа являются его неприменимость в условиях атмосферы, а также неприменимость для определения зарядов, не содержащих дейтерия. Известны способы дистанционного обнаружения ядерных зарядов, включающие облучение обследуемого объекта потоком нейтронов и регистрацию потоков нейтронов или гамма-лучей от объекта (2,3,4). Недостатком этих способов является их неприменимость в условиях, когда воздействие внешней радиации на обследуемый объект по тем или иным причинам недопустимо. Известен способ дистанционного обнаружения ядерных зарядов, состоящий в определении вблизи обследуемого объекта интенсивности гамма-излучения в диапазоне энергий 0,1-2,0 МэВ (5). Недостатком способа является возможность ложного обнаружения заряда, т. к. излучение с такой энергией может создаваться также невзрывными устройствами, содержащими радиоактивные вещества. Целью настоящего изобретения является повышение достоверности обнаружения путем идентификации взрывного или невзрывного характера делящихся материалов. Поставленная цель достигается тем, что вблизи обследуемого объекта определяют интенсивность N1 потока гамма-излучения в диапазоне 1,5 2,0 МэВ и интенсивность N2 потока гамма-излучения в диапазоне с шириной окна 1 МэВ, лежащем в интервале 9,9 11,8 МэВ, определяют фоновые интенсивности Ф1 и Ф2 излучения в этих диапазонах, и при выполнении для N1,N2,Ф1 и Ф2 условия:

где: T время измерений,
S эффективная площадь измерительного прибора для диапазона из интервала 9,9 11,8 МэВ,
k отношение эффективных площадей детектора во втором и первом диапазонах,
делают суждение о наличии в зоне обследования ядерных зарядов. Излучение в диапазоне из интервала 9,9-11,8 МэВ, как будет показано далее, образуется при радиационном захвате нейтронов, образующихся в заряде, ядрами азота-14, входящего в состав химического взрывчатого вещества, которое является необходимым компонентом ядерного заряда. Ширина данного диапазона определяется достигнутым к настоящему времени энергетическим разрешением сцинтилляционных детекторов (10%). Выбор границ диапазона 1,5-2,0 МэВ определяется, с одной стороны, уменьшением спектральной плотности гамма-излучения делящихся материалов при энергиях, больших 2,0 МэВ, с другой стороны увеличением поглощения при энергиях квантов, меньших 1,5 МэВ, в среде между делящимся веществом и детектором, что может приводить к искажениям результатов измерений. Рассмотрим возможность применения предложенного способа для достижения цели изобретения. В соответствии с (5), конструкция типичного ядерного заряда может быть представлена в виде следующей совокупности концентрических оболочек:
1. Внутренняя полая сфера из плутония с внутренним радиусом 2,1 см и внешним 4,2 см. 2.Бериллиевый отражатель нейтронов внутренний радиус 4,2 см, внешний 8,2 см. 3. Оболочка из обедненного урана внутренний радиус 8,2 см, внешний 11,2 см. 4. Оболочка из химического взрывчатого вещества внутренний радиус 11,2 см, внешний 21,2 см. 5. Оболочка из алюминия, моделирующая конструкционные материалы - внутренний радиус 21,2 см, внешний 22,2 см. Изотопный состав оболочек предполагается соответствующим данным (5). Согласно расчетам (5), интенсивность гамма-излучения с энергией в диапазоне 1,5-2,0 МэВ на расстоянии R от модели составляет порядка 3











величина NST (общее число импульсов, зарегистрированное в диапазоне из интервала 9,9-11,8 МэВ за время измерения) на величину более трех стандартных отклонений превышает общее число импульсов, ожидаемое в отсутствие азотсодержащего взрывчатого вещества [Ф2 + 2

N1 Ф1 2,5

N2 Ф2 2,5

Ф2 1


Заряд будет обнаружен. Пример 2. Детектор с эффективной площадью 1 м2, k 1, расположен на расстоянии 10 м от ядерной энергетической установки с уровнем излучения 3

N1 Ф1 2,5

N2 Ф2 5

Ф2 1


Ложного подтверждения наличия заряда не произойдет.
Формула изобретения

где Т время измерений,
S эффективная площадь измерительного прибора для диапазона из интервала 9,9 11,8 МэВ,
k отношение эффективных площадей детектора во втором и первом диапазонах,
делают суждение о наличии в зоне обследования ядерных зарядов.
Похожие патенты:
Изобретение относится к области экспериментальной ядерной физики, более конкретно к области дозиметрии гамма-излучения, и может использоваться для поиска и определения местоположения точечного и распределенного источников гамма-излучения в условиях загрязненной местности при одновременном определении интенсивности источника гамма-излучения и интенсивности фонового гамма-излучения
Изобретение относится к физике высоких энергий и может быть использовано в ядерной физике и физике космических лучей для идентификации частиц по ионизационным потерям и переходному излучению
Блок детектирования // 2056060
Изобретение относится к радиационным измерениям, в частности к конструкциям блока детектирования, например, заряженных частиц
Изобретение относится к технике физического эксперимента, в частности к ускорительной технике, и может быть использовано на ускорителях различных типов для стабилизации положения пучка на мишени
Изобретение относится к физическим измерениям
Изобретение относится к преобразователям параметров электронного излучения малой энергии ( 10 МэВ) и может быть использовано в ускорительной технике, радиационной технологии, метрологии электронного излучения
Рентгеновский приемник // 2117315
Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для медицинских рентгеновских установок, томографии, маммографии, а также для промышленных интроскопов с высоким пространственным разрешением
Матричный рентгеновский приемник // 2123710
Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для использования в медицинских рентгеновских установках, томографах, маммографах, а также в промышленных интроскопах с высоким пространственным разрешением
Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для использования в медицинских рентгеновских установках, томографах, маммографах, а также в промышленных интроскопах с высоким пространственным разрешением
Изобретение относится к компьютерной томографии, основанной на получении изображения объекта по малоугловому рассеянному излучению
Изобретение относится к технической физике может быть использовано для дистанционного контроля в реальном времени пространственного распределения радиоактивных объектов малой активности