Гамма-датчик с анизотропной чувствительностью
Использование: ядерная физика, в частности детекторы, позволяющие определить направленность ионизирующего излучения, а также гамма-астрономия. Сущность изобретения: гамма-датчик содержит осесимметричный детектор гамма-излучения, окруженный соосной с ним осесимметричной радиационной защитой. Внешняя поверхность радиационной защиты изотропного детектора со стороны гамма-излучателя образована вращением вокруг оси симметрии датчика кривой r() = -1/
ln[E(
)], где r(
)- толщина радиационной защиты со стороны гамма-излучателя, вдоль направления на гамма-излучатель;
- угол между осью симметрии датчика и направлением на гамма-излучатель;
- линейный коэффициент ослабления гамма-излучения для материала радиационной защиты со стороны гамма-излучателя, E(
)- диаграмма направленности датчика, определяемая, например, из зависимости E(
) = a
+b, где a = -2/
, b=1 Такая конструкция гамма-датчика позволяет обеспечить заданную точность пеленгования гамма-излучателя в произвольно выбранном диапазоне углов пеленгации и (или) повышенную точность в области малых углов. 4 ил.
Изобретение относится к ядерной физике, в частности к детекторам, позволяющим определить направленность ионизирующего излучения, а также к гамма-астрономии.
Известно устройство детектор в коллиматоре для выделения излучения, приходящего в детектор с определенного направления, представляющее собой сцинтилляционный детектор, окруженный радиационной защитой, имеющей цилиндрическое отверстие в передней части [1] Недостатком его является невозможность определения направления на источник излучения без механического сканирования. Прототипом изобретения, не требующим сканирования для определения направления прихода гамма-квантов, является гамма-датчик с анизотропной чувствительностью [2] Конструкция гамма-датчика представляет собой осесимметричный детектор гамма-излучения, окруженный соосно с ним осесимметричной радиационной защитой, наружная и внутренняя поверхности которой со стороны пеленгуемого гамма-излучателя выполнены в виде плоскостей, перпендикулярных оси симметрии датчика, а сцинтиллятор выполнен в виде диска, который окружен боковой радиационной защитой. Однако, такая конструкция не обеспечивает заданную точность пеленгования в произвольно выбранном диапазоне углов пеленгации, например, одинаковую точность во всем диапазоне углов пеленгации и более высокую точность в области малых углов, ввиду того, что зависимость чувствительности гамма-датчика в силу приведенных конструктивных особенностей пропорциональна косинусу угла между осью симметрии гамма-датчика и направлением на гамма-излучатель. Изобретение предназначено для определения направления на точечный гамма-излучатель с заданной точностью в произвольно выбранном диапазоне углов пеленгации, например, одинаковую точность во всем диапазоне углов пеленгации и более высокую точность в области малых углов, что не обеспечивается ни аналогом ни прототипом. Конкретный вариант постановки данной задачи проиллюстрирован на следующем примере. Несколько идентичных металлических шаров в потоке жидкости, подаваемой через патрубок 1 и вытекающий через патрубок 2, двигаются по трубке Пито 3 в жидкой среде (фиг. 1). Необходимо определить местоположение одного из них в отдельные последовательные моменты времени на траектории 4. Выбранный шар (шаровой индикатор) не может быть помечен каким-либо путем, кроме его активации, например, медленными нейтронами, так как во всех остальных случаях изменяются его физические характеристики (вес, структура поверхности, намагниченность и т.д.), влияющие на характер его поведения в жидкости или на взаимодействие его с остальными шарами. Учитывая то, что в этой задаче диаметр трубки Пито, расстояние между ее прямым и обратным коленом и собственные размеры заявляемого гамма-датчика 5 много меньше расстояния от датчика 5 до трубки Пито 3, положение шарового индикатора полностью определяется углом. При этом заявляемый гамма-датчик должен обеспечивать заданную точность пеленгования в произвольно выбранном диапазоне углов пеленгации и более высокую точность в области малых углов (





































Следовательно, изобретение обеспечивает более высокую точность определения направления на гамма-излучатель в области малых углов. На фиг. 1 представлена схема, иллюстрирующая поставленную задачу; на фиг. 2 графики зависимости чувствительности гамма-датчика-прототипа (кривая 2) и предлагаемого гамма-датчика (прямая 1) от угла между осью симметрии гамма-датчика и направлением на гамма-излучатель; на фиг. 3 графики зависимости относительной погрешности









d(









Гамма-датчик действует следующим образом. При перемещении гамма-излучателя 11 из положения









Формула изобретения

где r(


m линейный коэффициент ослабления гамма-излучения для материала защиты со стороны гамма-излучателя;
E(

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4