Способ получения модифицированных полиолефинов
Использование: получение композиционных материалов, клеящих веществ, облицовочных материалов. Сущность изобретения: способ получения модифицированных полиолефинов прививной ненасыщенной карбоновой кислоты или ее ангидрида на полиолефин в присутствии свободно-радикального инициатора при экструдировании смеси реагентов при температуре 20 - 100oС в условиях деформации сдвига от 50 до 1000% и давлении от 0,3 до 5 МПа. 2 з.п.ф-лы, 5 табл.
Изобретение относится к процессам получения модифицированных полиолефинов с пониженной степенью сшивки и/или деструкции и повышенными адгезионными свойствами и может найти применение в области получения различных композиционных материалов, клеящих веществ, облицовочных материалов, древесных плит.
Наиболее распространенным способом получения модифицированных полиолефинов является способ обработки расплава полиолефина реакционно-ненасыщенными мономерами, содержащими функциональные группы в присутствии пероксидов (Пат. США N 4788264, кл. 525 285, 1988). Проведение модификации полиолефинов в расплаве по сравнению с модификацией в растворе, позволяет сократить продолжительность процесса до нескольких минут, достичь высокой степени конверсии, а также высоких физико-механических и адгезионных характеристик модифицированного полиолефина. Так, сила адгезии к различным поверхностям у полипропилена возрастает с количеством привитого малеинового ангидрида от 0 до 1,5 кг/см2. Вместе с тем, во время такой высокотемпературной обработки полиолефины сильно деструктируют. Так, если количество малеинового ангидрида и перекиси бензоила превышает 2% вязкость образца значительно уменьшается, что затрудняет проведение экструзии расплава. Присутствие же промышленных антиоксидантов значительно затрудняет процесс модификации. Для регулирования этих нежелательных процессов деструкции и сшивки применяют различные добавки. Известен способ модификации полиолефинов в расплаве теми же компонентами, что было описано выше, но в присутствии азот-, серу-, фосфорсодержащих добавок, таких как диметилформамид, диметилацетамид, капролактам, ди- и трифенилфосфиты, диметилсульфоксид и др. (Пат. США N 4506056, кл. 524 445, 1985). Введением таких добавок удается приостановить процессы сшивки и деструкции, имеющие место при высоких температурах. Однако основными недостатками этого способа являются дороговизна применяемых в качестве добавок веществ, дополнительные энерго- и трудозатраты, высокая избирательность действия добавок для разных полиолефинов и мономеров. Наиболее близким к заявляемому способу является способ получения модифицированных полиолефинов, включающий прививку мономеров (ненасыщенные карбоновые кислоты или их производные, акриловая кислота или ее производные) на полиолефин в присутствии свободно-радикального инициатора при экструдировании смеси реагентов при температуре выше температуры плавления полиолефина (патент США 3862265, кл. 260 878R, 1975). При этом нежелательные процессы деструкции и сшивки полимера контролируются путем создания и использования специальной реакционной зоны экструдера, в которой осуществляется интенсификация процесса, что позволяет провести реакцию при минимальных механических и временных воздействиях. Недостатками этого способа являются высокая энергоемкость процесса из-за необходимости его проведения в расплаве, соблюдение особых условий для достижения пониженной степени сшивки и деструкции полимера. Кроме того, получаемый модифицированный полимер деструктирует в значительной степени и обладает недостаточно высокими адгезионными свойствами. При создании данного изобретения ставилась задача разработать высокоэффективный способ получения модифицированных полиолефинов путем прививки ненасыщенных мономеров без значительной деструкции или сшивки полимерной матрицы полиолефина при одновременном повышении адгезии к различным материалам. При этом ставилась задача значительно упростить и интенсифицировать процесс взаимодействия исходных реагентов, а также уменьшить за счет этого количество вводимых добавок, продолжительность процесса, объем аппаратуры, энерго- и трудозатраты. Задача решается по предлагаемому способу получения модифицированных полиолефинов путем прививки ненасыщенной карбоновой кислоты или ее ангидрида на полиолефин в присутствии свободно-радикального инициатора при экструдировании смеси реагентов, причем экструдирование смеси полиолефина и ненасыщенной карбоновой кислоты или ее ангидрида в присутствии инициатора осуществляют при температуре 20 100oС в условиях деформации сдвига от 50 до 1000% и давлении от 0,3 до 5 МПа. В отличие от известных способов модификацию осуществляют при взаимодействии тех же исходных компонентов полиолефин, реакционноспособный ненасыщенный мономер, свободнорадикальный инициатор, но при температуре ниже температуры плавления полиолефина в отсутствии растворителя, т.е. в твердой фазе, и в условиях деформации сдвига и давления. Согласно предлагаемому способу исходные реагенты могут быть введены в реакционную смесь в любой последовательности или одновременно. Кроме перечисленных исходных реагентов, необходимых для осуществления модификации полиолефинов, в реакционную смесь могут быть введены различные технологические добавки, наполнители композиционных материалов, как, например, древесина, что позволяет произвести компаундирование и значительно улучшает совместимость полимера и наполнителя. Полиолефины, которые могут быть использованы согласно изобретению включают гомологи этилена, полученные как при низком давлении, т.е. линейный или полиэтилен высокой плотности, так и при высоком давлении, т.е. разветвленный, или полиэтилен низкой плотности, аморфный атактический полипропилен, кристаллический изотактический полипропилен, сополимеры этилена с пропиленом. Свободно-радикальные инициаторы, которые могут быть использованы, включают ацильные перекиси, такие как перекись бензоила, диалкильные или арилалкильные перекиси, такие как перекись ди-трет-бутила, дикумила, пероксиэфиры, гидроперекиси и азосоединения, такие как азобисизобутиронитрил. В качестве ненасыщенных мономеров могут быть использованы ненасыщенные моно- и поликарбоновые кислоты и их ангидриды, такие как малеиновая, фумаровая, итаконовая, акриловая, метакриловая, полиакриловая кислоты, малеиновый, итаконовый ангидриды. Изобретение может быть проиллюстрировано следующими примерами: I. Получение модифицированного полиэтилена низкой плотности (ПЭНП). Пример 1. Смесь 470 г ПЭНП марки 16803-080, имеющего индекс расплава 8 г/10 мин, 25 г малеинового ангидрида (МА) и 5 г перекиси бензоила (ПБ) подают на двухшнековый экструдер (диаметр 40 мм, 1:Д=23) при скорости вращения шнека 100 об/мин. Далее смесь исходных реагентов подвергают воздействию деформации сдвига 100% при температуре 80oС, давлении 0,6 Ма в течение 10 мин. Величину деформации сдвига определяют по известной методике (а.с.СССР N 1423657, кл D 21 B 1/16, 1988), исходя из следующих задаваемых параметров:





Ro средний радиус сечения измельчающего элемента (26,0


Конечным продуктом реакции является белый порошок модифицированный ПЭНП, содержащий 0,1% привитых карбоксильных групп, количество которых определено по известной методике (пат. США N 3862266, 1975 или пат. США N 4506056). Сравнительные данные по адгезионным свойствам модифицированного и немодифицированного ПЭН, а также согласно прототипу представлены в табл. 1. Сила адгезионных связей между алюминиевой фольгой и модифицированным ПЭН, а также необработанным ПЭНП (сравнительный пример) измерена на ламинатах А1-полимер-А1, отпрессованных при 140oС и давлении 3 5 МПа по известной методике (пат. США N 4506056, 1985). Аналогичные ламинаты приготовлены на ткани и испытаны по такой же методике. Примеры 3 12
Получение модифицированного ПЭНП по примерам 3 12 с различными параметрами процессов, а также анализ привитых карбоксильных групп по этим примерам проводят аналогично примеру 1. Параметры процессов и результаты анализов содержания привитых карбоксильных групп по примерам 3 12 представлены в табл. 2. Расчет величин деформации сдвига осуществляют аналогично примеру 1, исходя из следующих заданных параметров:
для примера 6


для примера 7


для остальных примеров как для примера 1. II. Получение модифицированного полипропилена (ПП)
Пример 13
Смесь 470 г ПП марки 01П, имеющего индекс расплава 0,1 г/10 мин, 25 г малеинового ангидрида и 5 г перекиси бензоила подают на двухшнековый экструдер (диаметр 40 мм, L:Д=23) при скорости вращения шнека 100 об/мин. Далее смесь исходных реагентов подвергают воздействию деформации сдвига 100% при температуре 90oС, давлении 0,6 МПа в течение 10 мин. Расчет величины деформации сдвига осуществляется аналогично примеру 1, исходя из следующих заданных параметров: w 628 рад/мин; Q 0,14 кг/мин; w 950 кг/м3; L 6

Получение модифицированного ПП по примерам 15 22 с различными параметрами процессов и различным составом исходных компонентов: акриловой (АК), полиакриловой (ПАК) кислот, малеинового ангидрида, перекиси бензоила, либо азоизобутиронитрила (АИБН), а также анализ привитых карбоксильных групп и ММ по этим примерам проводят аналогично примеру 13. Параметры процессов и результаты анализов содержания привитых карбоксильных групп, а также ММ по примерам 15 22 представлены в табл. 5. Расчет величины деформации сдвига осуществляется аналогично примеру 1, исходя из следующих заданных параметров:
для примера 15 r 628 рад/мин; Q 0,14 кг/мин; L 3

для примеров 17, 22 как для примера 6;
для остальных примеров как для примера 1. Из приведенных примеров видно, что способ согласно изобретению может быть легко реализован в промышленных масштабах, не требует сложного аппаратурного оформления. Процесс протекает при значительно более низких температурах (по сравнению с прототипом), не вызывает значительной деструкции или сшивки полимерной матрицы и позволяет получить продукты с повышенной степенью адгезии. акриловой (АК), полиакриловой (ПАК) кислот, малеинового ангидрида, перекиси бензоила, либо азоизобутиронитрила (АИБН), а также анализ привитых карбоксильных групп и ММ по этим примерам проводят аналогично примеру 13. Параметры процессов и результаты анализов содержания привитых карбоксильных групп, а также ММ по примерам 15 22 представлены в табл. 5. Расчет величины деформации сдвига осуществляется аналогично примеру 1, исходя из следующих заданных параметров:
для примера 15 w 628 рад/мин; Q 0,14 кг/мин; L 3

для примеров 17, 22 как для примера 6;
для остальных примеров как для примера 1. Из приведенных примеров видно, что способ согласно изобретению может быть легко реализован в промышленных масштабах, не требует сложного аппаратурного оформления. Процесс протекает при значительно более низких температурах (по сравнению с прототипом), не вызывает значительной деструкции или сшивки полимерной матрицы и позволяет получить продукты с повышенной степенью адгезии.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3