Оптико-электронное устройство для измерения поперечных смещений
Изобретение относится к контрольно-измерительной технике. Технический результат - повышение точности измерения путем обеспечения постоянства пространственной чувствительности устройства к поперечным смещениям. Устройство содержит задатчик базового направления, в виде блока с двумя источниками модулированного излучения, который образует равносигнальную зону. Двух делителей частоты, входы которых соединены с выходом генератора опорной частоты, с которым соединен и вход третьего делителя, второй вход первого модулятора соединен с выходом фазовращателя, и приемную часть, включающую объектив, в фокальной плоскости которого установлен фотоприемник, выход которого соединен со входом предусилителя, выходы двух полосовых фильтров соединены со входами двух выпрямителей, выходы которых соединены со входом вычитающего устройства, и индикатор, а выход третьего делителя соединен со вторым входом модулятора и со входом фазовращателя, в приемную часть введен усилитель с АРУ, третий полосовой фильтр, фильтр низкой частоты и выпрямитель, причем вход усилителя с АРУ соединен с выходом предусилителя, а его выход соединен с входами первого и второго фильтров, а выход вычислительного устройства соединен через фильтр низких частот со входом индикатора, а через третий полосовой фильтр и выпрямитель с управляющим входом усилителя с АРУ. 3 ил.
Изобретение относится к контрольно-измерительной технике, а именно к области оптико-электронных приборов для дистанционного бесконтактного контроля и измерения пространственного положения объекта при его возможном поперечном смещении относительно задатчика базового направления.
Оно может быть использовано как измерительное устройство в геодезии, машиностроении, авиационной промышленности, судостроении и как датчик системы автоматического бесконтактного одновременного управления движением, различными объектами по заданной траектории в дорожном и мелиоративном строительстве, горном деле, самолето- и судостроении. Известно оптико-электронное устройство для измерения пространственного положения объекта, содержащее задатчик базового направления, формирующий базовую плоскость, и два фотоприемника, один из которых введен в зону максимальной облученности на данной дистанции (М.А.Великотный "О построении прибора управления лучом с неизменной выходной статической характеристикой". Труды ЛИТМО, выпуск 90, Ленинград, 1977 г. стр. 84-85). В указанном устройстве выходной сигнал рассогласования получают в виде отношения сигнала рассогласования к сигналу максимально возможному на данной дальности. Наличие второго приемника усложняет конструкцию устройства, а деградация фотоприемников снижает точность данного устройства, так как оно работает при условии линейности энергетических характеристик фотоприемников, регистрирующих сигнал рассогласования и максимальный уровень сигнальной засветки. Свободным от указанных недостатков и наиболее близким по технической сущности к заявляемому устройству и принятым авторами за прототип является оптико-электронное устройство для измерения поперечных смещений (А. с. N 1370457, G 01 B 21/00, от 25.06.86). Устройство, состоящее из задатчика базового направления, включающего объектив, проецирующий в пространство изображение граней прямоугольной светоделительной призмы, подсвечиваемой двумя источниками излучения светодиодами, расположенными у катетных граней светоделительной призмы, и электронную схему питания излучателей, включающую генератор, выход которого подключен ко входам трех делителей частоты, выходы первого и второго делителей частоты подключены ко входам первого и второго модуляторов, а выход третьего делителя частоты подключен ко входу генератора треугольных импульсов, при этом выходы первого и второго модуляторов подключены к излучателям (светодиодам), а выход генератора треугольных импульсов подключен к управляющему входу первого модулятора и через фазовращатель к управляющему входу второго модулятора и приемника, включающего объектив и фотоприемник, выход которого подключен на вход предусилителя, а выход последнего на входы двухполосовых фильтров, выходы которых через соответствующие выпрямители включены на входы сумматора, выход которого включен на вход усилителя ограничителя, выход последнего включен на входы дифференцирующей цепочки и реверсивного счетчика, при этом на второй и третий входы реверсивного счетчика подключены выходы дифференцирующей цепочки и генератора опорной частоты, а выход реверсивного счетчика включен на вход индикатора. В таком устройстве выходной сигнал определяется смещением оптической фотоприемной части с линии симметрии сканирования. Однако с изменением пропускания воздушного тракта и увеличением дальности чувствительность к поперечным смещениям приемника данного устройства падает. Предполагаемое изобретение направлено на решение задачи повышения точности измерения поперечных смещений путем обеспечения постоянства пространственной чувствительности устройства к поперечным смещениям. Под пространственной чувствительностью подразумевается отношение выходного сигнала устройства, например напряжения на его выходе, к величине поперечного смещения оптической оси приемника относительно базовой плоскости. Поставленная задача решается тем, что оптико-электронное устройство для измерения поперечных смещений содержит задатчик базового направления, состоящий из оптически связанных объектива и светоделительной призмы, первого и второго источников излучения, расположенных симметрично относительно катетных граней светоделительной призмы и подключенных к выходам первого и второго модуляторов, первые входы которых соединены с выходами первого и второго делителей частоты, входы которых соединены с выходом генератора опорной частоты, с которым соединен и вход третьего делителя, второй вход первого модулятора соединен с выходом фазовращателя, и приемную часть, включающую объектив, в фокальной плоскости которого установлен фотоприемник, выход которого соединен со входом предусилителя, выходы двух полосовых фильтров соединены со входами двух выпрямителей, выходы которых соединены со входом вычитающего устройства, и индикатор, а выход третьего делителя соединен со вторым входом второго модулятора и со входом фазовращателя, в приемную часть введен усилитель с автоматической регулировкой усиления (АРУ), третий полосовой фильтр, фильтр низких частот и выпрямитель, причем вход усилителя с АРУ соединен с выходом предусилителя, а его выход соединен со входами первого и второго фильтров, а выход вычитающего устройства соединен через фильтр низких частот со входом индикатора, а через третий полосовой фильтр и выпрямитель с управляющим входом усилителя с АРУ. Сущность изобретения поясняется чертежами, где на фиг. 1 изображена структуpная схема устройства, на фиг. 2 изображены диаграммы работы устройства, на фиг. 3 изображена принципиальная электрическая схема модулятора. Задатчик базового направления 1 (фиг. 1) состоит из объектива 2, проецирующего грань прямоугольной светоделительной призмы 6, установленной так, что ее ребро, образованное катетными отражающими сторонами, перпендикулярно оптической оси объектива и установлено в его фокальной плоскости, подсвечиваемой источниками излучения 4, 5, причем их оптические оси проходят через ребро призмы и расположены с оптической осью объектива в одной плоскости и при этом ребро призмы, оптические оси светодиодов и объектива образуют ортогоксальную систему. Источники излучения 4, 5, образующие с призмой 6 излучатель 3, подключены к схеме питания излучателя 7, состоящей из генератора частоты 8, выход которого соединен со входами первого 9, второго 11 и третьего 10 делителей частоты, причем выход первого делителя частоты 9 подключен к первому входу первого модулятора 12, выход второго делителя частоты 11 подключен к первому входу второго модулятора 14, а выход третьего делителя частоты 10 подключен ко второму входу второго модулятора 14 и через фазовращатель 13 ко второму входу первого модулятора. Приемная часть 15 состоит из объектива 16, в фокальной плоскости которого установлен фотоприемник 17, выход которого соединен со входом предусилителя 18, а выход последнего соединен входом усилителя с АРУ 19, выход которого соединен со входами первого 20 и второго 21 полосовых фильтров, выходы которых через соответствующие выпрямители 22 и 23 соединены со входом вычитающего устройства 24, выход которого через фильтр низкой частоты 25 подключен к индикатору 26, и через полосовой фильтр 27, выпрямитель 28 с управляющим входом усилителя с АРУ 19. Устройство работает следующим образом (см. фиг. 2). Объектив 2 задатчика базового направления 1 проецирует изображение грани светоделительной призмы 6, катетные стороны которой подсвечиваются источниками излучения 4, 5. Каждый из источников излучения 4, 5 является нагрузкой соответствующего модулятора 12 и 14, на первые входы которых через некратные делители частоты 9, 11 с генератора частоты 8 поступает переменное напряжение с частотами f1 и f2, соответственно. Делитель 10 вырабатывает переменное напряжение с частотой f3 (диаграмма а фиг. 2), которое поступает на второй вход второго модулятора 14 и через фазовращатель 13, осуществляющий сдвиг фазы на 180o, на второй вход первого модулятора 12. В результате на выходах модуляторов появится напряжение частот f1 и f2, соответственно промодулированное противофазным прямоугольным напряжением частоты f3 (диаграмма б, в фиг. 2) с определенным коэффициентом амплитудной модуляции М (М 1) (Гоноровский И.С. "Радиотехнические цепи и сигналы". Радиосвязь, 1986, стр. 75). Поскольку модуляторы 12, 14 подключены к источникам излучения 4, 5, то излучение каждого источника излучения будет промодулировано в противофазе частотой f3 с частотным заполнением для источника 4, например, f1, а для источника 5, например, f2. Таким образом, в пространстве будет сформировано излучение с резкой границей на оси луча, причем одна половина его будет промодулирована частотой f1, а другая частотой f2. Такое пространственное распределение излучения образует зону управления с оптической равносигнальной зоной (ОРСЗ), определяющей направление. Как известно, изменение яркости источников в каналах задатчика базового направления (ЗБН) вызывают сдвиг ОРСЗ (Цуккерман С.Т. Гридин А.С. "Управление машинами при помощи оптического луча". Машиностроение, 1969, стр. 149-150) в направлении, перпендикулярном формируемой плоскости. Величина этого сдвига зависит как от значений геометрических и аберрационных параметров оптической системы ЗБН, так и абсолютной величины разбаланса яркости источников в каналах. Последнее позволяет предположить, что осуществляя модуляцию яркости в каналах, можно обеспечить требуемый закон сканирования ОРСЗ. Облученность E1 в плоскости, перпендикулярной оптической оси ЗБН, создаваемая источником первого осветителя (фиг. 1) зависит от координат точки, в которой исследуется облученность. При фиксированном значении координаты "y" облученность будет зависеть от величины смещения "x" исследуемой точки по известному закону (Цуккерман С.Т. Гридин А.С. "Управление машинами при помощи оптического луча". Машиностроение, 1969).






Zo расстояние от выходного зрачка объектива ЗБН до плоскости фокусировки границы раздела
d поперечный размер зрачка объектива ЗБН
Для облученности, создаваемой вторым осветителем ЗБН E2 будет

Так как ОРСЗ есть геометрическое место точек, в которых облученность от первого канала ЗБН равна облученности от второго канала, т.е. E1 E2, то

С учетом (1), (2) и (3), получим:

где L1, L2 яркости излучателей первого и второго каналов ЗБН. Пусть


L1=Lo+



во втором канале
L2=Lo+






где

t время
v фаза

И тогда из (4)

Таким образом, РСЗ смещается во времени по гармоническому закону, т.е. имеет место сканирование РСЗ. Таким образом, из выражения (5) видно, что амплитуда сканирования РСЗ прямо пропорциональна абсолютной величине яркости в каналах и зависит от дистанции Z, величины аберрации и размера зрачка. Если


Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3