Устройство для тепловой обработки потока огнеупорных сыпучих материалов
Сущность изобретения: при зажигании дуги 3 между стержневыми электродами 2, расположенными в разрядной камере 1, через обмотку стабилизации (ОС) 11, регулируемое сопротивление стабилизации (РСС) 13 протекает ток I в соответствии с напряжением источника питания Uс. Одновременно через обмотку управления (ОУ)10 и регулируемое сопротивление управления (РСУ)12 протекает ток управления Iу в соответствии с напряжением источника питания Uу. РСС13 и РСУ12 могут реализоваться как регулируемые части ОС11 и ОУ10. В магнитопроводе с ярмом 8 и полюсными наконечниками 9 возникает поперечное магнитное поле, приводящее к появлению силы Лоренца, вытягивающей дуговой разряд в соответствии с заданными величинами регулируемых сопротивлений РСУ12 и РСС13, отрабатываемых механизмами отработки (МО2) 15 и (МО1) 14, управляемых от формирователя сигналов управления ФСУ17, на который поступают параметры управления и постоянные величины от задатчика параметров работы ЗПР16. С первого выхода ЗПР16 параметр з поступает на третий механизм отработки МО3, отрабатывающий регулируемую заслонку (дозатор) бункера, соответственно заданный поток исходного материала поступает в наиболее нагретую область пространства - плазменную печь, где частицы нагреваются, и выходной поток частиц, нагретых до заданной температуры T43, выдается потребителю для формирования изделий с заданными переменными плотностью, структурой и качеством поверхности. 3 ил.
Изобретение относится к электротехнике и касается преобразования электрической энергии в тепловую в электрическом газовом разряде плазмотрона.
Изобретение может быть использовано для производства изделий с переменными структурой, плотностью, качеством поверхности в отраслях строительной, стекольной промышленности, декоративно-прикладного искусства. Известны устройства, содержащие плазмотрон с разрядной камерой, внутри которой установлены два стержневых отрабатываемых электрода, магнитопровод в виде охватывающего разрядную камеру ярма с двумя полюсными наконечниками, на которых размещены обмотка управления, подключенная к источнику питания постоянного тока, и обмотка стабилизации, подключенная к автономному источнику постоянного тока питания дуги газового разряда, а также бункер подачи исходного обрабатываемого материала [1] [2] [3] Во всех известных устройствах на основе плазмотрона не решена проблема нагрева изменяемого потока частиц обрабатываемого материала до заданных изменяемых температур. Технический результат предлагаемого технического решения заключается в обеспечении нагрева заданного изменяемого потока частиц обрабатываемого материала до заданных изменяемых температур и, как следствие этого, возможность формирования изделий с заданными переменной структурой, плотностью и качеством поверхности. Технический результат достигается тем, что в устройство, содержащее разрядную камеру, два стержневых электрода, магнитопровод с охватывающим разрядную камеру ярмом и установленными в плоскости, перпендикулярной плоскости установки электродов, двумя полюсными наконечниками, на которых размещены обмотка стабилизации с выводами, подключенными к источнику постоянного тока питания дуги газового разряда, и отмотка управления с выводами, подключенными к автономному источнику питания постоянного тока, бункер подачи исходного сыпучего материала, дополнительно введены включенное между одним электродом и одним концом обмотки стабилизации регулируемое сопротивление стабилизации, включенное между концами обмоток управления регулируемое сопротивление управления, задатчик параметров работы и формирователь сигналов управления, на первый-двенадцатый входы которого подключены первый-двенадцатый выходы задатчика параметров работы, отрабатывающий регулируемое сопротивление стабилизации первый механизм отработки, на один вход которого подключен его выход, а на другой вход подключен второй выход формирователя сигналов управления, отрабатывающий регулируемое сопротивление управления второй механизм отработки, на один вход которого подключен его выход, а на другой вход подключен первый выход формирователя сигналов управления, дозатор, отрабатываемый третьим механизмом отработки, на один вход которого подключен его выход, а на другой вход подключен первый выход задатчика параметров работы. На фиг. 1 представлена схема предлагаемого устройства, вид спереди; на фиг. 2 то же, вид в плане; на фиг.3 схема реализации формирователя сигналов управления. На чертежах приняты следующие обозначения: 1 разрядная камера плазмотрона, 2 стержневые электроды, 3 траектория дуги газового электрического разряда, 4 бункер подачи исходного материала, 5 регулируемая заслонка (дозатор), 6 поток частиц исходного материала, 7 поток нагретых частиц, 18 плазменная печь (наиболее нагретая область пространства), 19 третий механизм отработки, 8 ярмо магнитопровода, 9 полюсные наконечники, 10 обмотка управления (ОУ), 11 обмотка стабилизации (ОС), 12 регулируемое сопротивление управления (РСУ), 13 регулируемое сопротивление стабилизации (РСС), 14 первый механизм отработки (МО1), 15 второй механизм отработки (МО2), 16 задатчик параметров работы (ЗПР), 17 формирователь сигналов управления (ФСУ), 20 первый блок деления (БД1), 21 первый блок умножения (БУ1), 22 второй блок умножения (БУ2), 23 первый блок разности (БР1), 24 квадратор (КВ), 25 первый сумматор (С1), 26 блок извлечения корня квадратного (БИК), 27 второй сумматор (С2), 28 второй блок разности (БР2), 29 второй блок деления (БД2), 30 третий блок разности (БР3), 31 четвертый блок разности (БР4), 32 третий блок умножения (БУ3), 33 четвертый блок умножения (БУ4), 34 пятый блок разности (БР5). При зажигании дугового разряда между стержневыми электродами 2, расположенными в разрядной камере 1, через ОС11, РС13 протекает электрический ток I=







Е, Ео известные постоянные для данного устройства величины. Из бункера 4 через регулируемую заслонку 5 вытекает поток частиц 6 исходного материала n K4














(здесь К6 коэффициент пропорциональности), при E1 K3K4K5K6Eo
H E+E1



T4= K7






При RK5K7K3= K, F


T4=

Известно [6] что при изменениях тока I параметры дуги (сечение, степень ионизации) не успевают отслеживать изменения I, а при выборе постоянного рабочего тока Ip >>Im на восходящей ветви ВАХ динамическая и статическая ВАХ соответствуют друг другу, при этом Ip=

Rc3=

Из условия обеспечения заданной температуры частиц Т43 заданного потока частиц, определяемого

Tу3=

или






откуда
Iу3+Ip=




Так как
Rу= Rуо+Rур=

то Rур3=

Rср3= Rc3-Rco=


Зависимости (1), (2), (3) определяют регулировочные величины Ryp3 и Rcp3, при выбранных величинах Ip и


В ФСУ17:
первый вход

второй вход (Т43) подключен ко вторым входам БУ1 (21) и БУ2 (22);
третий вход (Ip) подключен ко входу БД1 (20) и к одному входу БР2 (28);
четвертый вход (F) подключен к первому входу БУ1 (21);
пятый вход (F1) подключен к третьему входу БУ2 (22);
шестой вход (Io) подключен к одному входу БР1 (23);
седьмой вход (Uy) подключен к одному входу БД2 (29);
восьмой вход (Ryo) подключен к одному входу БР3 (30);
девятый вход (Uc) подключен к одному входу БР4 (31);
десятый вход (Uo) подключен к другому входу БР4 (31);
одиннадцатый вход (R) подключен к первому входу БУ4 (33);
двенадцатый вход (Rco) подключен к первому входу БР5 (34);
на первый выход (Rуp3) подключен выход БР3 (30);
на второй выход (Rcp3) подключен выход БР5 (34);
в БД1 (20) формируется сигнал


































(Rср3-Rср)



















Таким образом достигается технический результат заданный поток частиц 6 исходного материала в соответствии с отработанным

Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3