Способ получения алюминиево-кремниевого сплава и натриево- алюминевых фторидов в электролизере для получения алюминия
Авторы патента:
Использование: получение алюминиево-кремниевого сплава и натриево-алюминиевые фторидов в электролизере для получения алюминия. Сущность: загрузка в электролит спеченной смеси глинозема, кремнефтористого натрия и карбоната натрия, содержание которого определяют по формуле, приведенной в тексте описания. При этом используют карбонат натрия, не менее 80 мас. частиц которого имеют крупность более 160 мкм. Повышается извлечение кремния в сплав и выход жидкого электролита. 1 з. п. ф-лы, 3 табл.
Изобретение относится к цветной металлургии и может быть использовано при производстве алюминиево-кремниевых сплавов и криолита в электролизерах для получения алюминия.
Известен способ получения алюминиево-кремниевого сплава в электролизере с использованием электролита, содержащего, мас. фторид алюминия 39,1-45; фторид натрия 52,8-58,7; глинозем 0,3-3,5; кремнезем 0,24-0,38. Кремнезем вводят в состав электролита в смеси с глиноземом. Поддержание концентрации кремнезема в электролите алюминиевого электролизера в пределах 0,24-0,38 мас. обеспечивает устойчивый технологический режим работы электролизера, а также достижение приемлемых технико-экономических показателей. К основным недостаткам описанного технического решения относятся снижение выхода по току до 68-73% при повышении концентрации кремния в сплаве до 2,7-3,7 мас. низкая производительность электролизера по кремнию (15-20 кг/сутки кремния при силе тока серии 130-150 кА). Указанные недостатки в значительной степени устраняются в известном способе получения алюминиево-кремниевого сплава в электролизере для производства алюминия, выбранном за прототип. Отличительным признаком данного технического решения является использование в качестве кремнесодержащего компонента кремнефторида натрия, который предварительно спекают с глиноземом при 550-650оС и массовом соотношении 1: (0,5-1,5), причем электролиз ведут при поддержании концентрации кремния в сплаве не более 9 мас. Указанный способ характеризуется достаточно высокими технико-экономическими показателями; производительность электролизера по кремнию 70-127 кг/сут; содержание кремния в сплаве до 9 мас. выход сплава по току 87-88% извлечение кремния в сплав до 94 мас. дополнительное к сплаву в электролизере получают жидкий электролит в количестве 900-950 кг на 1000 кг переработанного кремнефторида натрия. Приведенные показатели характеризуют работу опытных электролизеров. К основным недостаткам способа относится следующее. Невысокий выход электролита (900-950 кг/12000 кг Na2SiF6) и кремния (130-140 кг/1000 кг Na2SiF6) при переработке кремнефторидной смеси (теоретические выходы криолита и кремния по реакции (1) составляют соответственно 1042 и 148,9 кг). 3Na2SiF6 + 2Al2O3 6NaF
4Na2SiF6 + 2Al2O3 Na2AlF6 +
+ Na5Al3F14 + 3SiO2 + SiF4 (2)
Некоторые технико-экономические показатели процесса взаимодействия кремнефторида натрия с глиноземом, описывае- мого уравнениями (1) и (2), приведены в табл.1. Экспериментальные данные подтверждают предложение о преимущественном протекании взаимодействия кремнефторида натрия с глиноземом по механизму (2). В частности, при спекании смесей стехиометрического по реакциями (1) и (2) состава практическое извлечение кремния в SiO2 находится на уровне 75% криолитовое отношение получаемых фторалюминатов 1,9-2,2, а фактический выход криолита не превышает 900 кг/1000 кг Na2SiF6. Следует добавить, что уравнение (2) является суммарной реакцией, характеризующей весь процесс, состоящий из трех последовательно-параллельных стадий;
4Na2SiF6 8NaF + 4SiF4 (3)
3SiF4 + 2Al2O3 4AlF3 + 3SiO2 (4)
8NaF + 4AlF3 Na3AlF6 + Na5Al3F14 (5)
В техническом решении, выбранном за прототип, вопрос повышения технико-экономических показателей на стадии спекания решается за счет введения в исходную смесь значительных количеств избыточного глинозема, а также за счет поддержания температуры спекания 550-650оС. Избыток глинозема обеспечивает частичное улавливание непрореагировавшего тетрафторида кремния, за счет чего увеличиваются выход электролита до 900-950 кг/1000 кг Na2SiF6, и извлечение кремния из Na2SiF6 в SiO2. Низкая температура спекания в силу кинетических особенностей процесса, позволяет получать мелкодисперсный аморфный диоксид кремния, который обеспечивает достаточно высокие показатели по извлечению кремния на стадии электролиза. Несмотря на положительное влияние избыток глинозема полностью не решает вопроса, связанного с потерями фтора в виде SiF4, AlD3, HF. Эти потери обусловлены
неполным взаимодействием SiF4 с глиноземом даже при значительном избытке последнего;
низким модулем получаемых при спекании фторалюминатов натрия, который при последующей переплавке спека в электролизере увеличивается до 2,6-2,8;
потерями фтора с корки электролизера за счет испарения и пирогидролиза образующегося криолит-хиолитового спека. Благодаря перечисленным особенностям известное техническое решение не обеспечивает наработку максимальных количеств натриево-алюминиевых фторидов и кремния. В этом заключается его основной недостаток. Цель изобретения заключается в повышении выхода жидкого электролита и кремния в сплав при переработке спеченной кремнефторидной смеси в алюминиевом электролизере. Поставленная цель достигается тем, что в исходную смесь кремнефторида натрия с глиноземом дополнительно вводят карбонат натрия, процентное содержание которого в смеси поддерживают в пределах, определяемых формулой
Na2CO3(мас.) (1




Кроме того, используемый карбонат натрия не менее чем на 80 мас. должен быть представлен частицами крупностью более 160 мкм. Сущность предлагаемого технического решения состоит в том, что вводимый в состав кремнефторидной шихты карбонат натрия связывает не вступивший во взаимодействие с глиноземом SiF4, увеличивая тем самым не только извлечение кремния и фтора в целевые продукты, но и модуль образующихся фторалюминатов натрия. Отдельные стадии, а также суммарное уравнение процесса в этом случае записываются в виде
4Na2SiF6 8NaF + 4SiF4 (7)
SiF4 + 2Na2CO3 4NaF + SiO2 + 2CO2 (8)
3SiF4 + 2Al2O3 4AlF3 + 3SiO2 (9)
12NaF + 4AlF3 4Na3AlF6 (10)
4Na2SiF6 + 2Al2O3 + 2Na2CO3
4Na3AlF6 + 4SiO2 + 2CO2 (11)
Некоторые технико-экономические показатели процесса (11) приведены в табл. 1. Взаимодействие карбоната натрия с кремнефторидом натрия по реакциям (7) и (8) протекает активнее и при более низких температурах, чем спекание глинозема с кремнефторидом натрия. Это обеспечивает улавливание SiF4 на начальной, наименее эффективной стадии взаимодействия кремнефторида натрия с глиноземом. Увеличение концентрации высокоактивного фторида натрия в реакционной смеси, образующегося по реакции (8), к моменту, когда интенсифицируется фторирование глинозема по реакции (9), обеспечивает повышенный выход криолита по реакции (10). Кроме того, использование карбоната натрия не менее чем на 80 мас. представленного частицами крупностью более 160 мкм, обеспечивает получение фторида натрия по реакции (8) с преимущественной крупностью частиц 100-160 мкм. Известно, что использование в процессе криолитообразования фторида натрия крупностью 100-160 мкм обеспечивает получение крупнокристаллического продукта. Целесообразность получения крупнокристаллического криолита при спекании фторидов натрия и алюминия по реакции (10) продиктована стремлением снизить потери фтора за счет диссоциации и пирогидролиза натриевых фторалюминатов в промежуток времени между завершением процесса спекания кремнефторидной шихты и технологической обработкой электролизера. Следует отметить, что известно использование карбоната натрия для улучшения технико-экономических показателей процесса спекания кремнефторида натрия с тугоплавкими оксидами. Так, в способе получения комплексного фторида титана, включающем спекание смеси диоксида титана с кремнефторидом натрия, в нее дополнительно вводят карбонат натрия с мольным расходом, определяемым по формуле
Na2CO3(моль) (1


Основное отличие предлагаемого способа состоит в том, что введение в исходную смесь карбоната натрия, крупность которого не менее чем на 80 мас. представлена фракцией

уменьшить количество избыточного глинозема в смеси;
снизить потери кремния и фтора на стадии спекания за счет улавливания части SiF4 по реакции (8);
сократить потери фтора и алюминия при электролизе за счет повышения криолитового отношения загружаемых в электролит натриевых фторалюминатов;
придать получаемым комплексным фторидам новое качество крупнокристаллическую структуру, за счет которой сократить потери фтора от диссоциации и пирогидролиза. Зависимость (6) рационального содержания карбоната натрия в реакционной смеси получена эмпирическим путем. Данное уравнение справедливо в интервале весовых отношений

Формула изобретения

где P весовой расход карбоната натрия на приготовление смеси,
C 0,67 3,69 весовое отношение кремнефторида натрия к глинозему в исходной смеси. 2. Способ по п. 1, отличающийся тем, что используют карбонат натрия, содержащий не менее 80% массовых частиц крупностью более 160 мкм.
РИСУНКИ
Рисунок 1
Похожие патенты:
Изобретение относится к цветной металлургии и может быть использовано при получении алюминиево-кремниевых сплавов в электролизере для производства алюминия
Изобретение относится к металлургии цветных металлов и касается получения алюминий-стронциевой лигатуры, применяемой для модифицирования алюминиевых сплавов
Способ получения свинцово-натриевого сплава // 1759040
Изобретение относится к электрохимическим производствам, а точнее к полученинэ оксидных вольфрамовых бронз при меньшей температуре электрокристаллизации
Изобретение относится к электрохимическим производствам,а точнее к получению оксидных вольфрамовых бронз при меньшей температуре электроосаждения, позволяющих получать рубидий-вольфрамовые бронзь! гомогенного состава
Способ получения силицидов титана // 1696591
Изобретение относится к высокотемпературной электрохимии и направлено на получение силицидов титана путзм электролиза распгззое
Изобретение относится к области цветной металлургии, в частности к получению алюмокремниевых сплавов электролитическим методом, и может быть использовано в электролизных цехах, производящих алюминий
Изобретение относится к цветной металлургии и может использоваться для переработки анодных осадков, образующихся при электролитическом рафинировании алюминия
Изобретение относится к способу получения алюминиево-кремниевого сплава в электролизере для производства алюминия
Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом
Способ производства силумина // 2065510
Изобретение относится к производству алюминиево-кремниевых сплавов
Изобретение относится к области цветной металлургии, в частности к получению сплавов на основе магния, а также к переработке отходов магниевого производства. Способ получения магниево-кальциевых сплавов включает электролиз расплавленного электролита. В качестве расплавленного электролита используют отработанный электролит магниевого производства, содержащий мас.%: KCl2 не менее 68, NaCl2 12-24, MgCl2 4-9, CaCl2 0,7-2. Электролиз ведут при наложении переменного тока на постоянный при поддержании суммарной плотности тока, равной 0,3-0,8 А/см2, и уменьшении ее пропорционально снижению содержания магния и кальция в электролите. В результате получают сплав магний-кальций состава, мас.%: Mg 60-80; Са 20-40 и смесь хлоридов, содержащую, мас %: NaCl 15-25; KCl 75-85; MgCl 0,1-0,4; CaCl 0,04-0,2. Техническим результатом является получение из отработанного электролита магниевого производства магниево-кальциевого сплава и солевой смеси для производства покровных флюсов, а также уменьшение солевых отходов и улучшение экологии окружающей среды. 3 пр.
Изобретение относится к электрохимическому получению лигатурных алюминий-циркониевых сплавов. В способе осуществляют анодную гальваностатическую поляризацию циркония с плотностью тока 0,5-4,0 мАсм-2 в течение 1-5 часов в расплавленных хлоридах щелочных металлов или смеси хлоридов щелочных и щелочноземельных металлов, содержащих расплавленный алюминий или алюминий-магниевый сплав, при температуре 700-750°С в атмосфере аргона. Изобретение позволяет получить лигатурные алюминий-циркониевые сплавы, содержащие до 57 мас.% циркония при снижении температуры процесса, трудоемкости и обеспечении экологической безопасности. 3 пр., 6 ил.
Изобретение относится к электрохимическому способу получения металлов, за исключением щелочных и щелочно-земельных, и/или сплавов металлов. Способ включает восстановление металлов и/или сплавов в кальцийсодержащем оксидно-галогенидном расплаве из соединений получаемых металлов и/или из смесей соединений металлов получаемых сплавов. Процесс электролиза ведут с использованием инертного кислородвыделяющего анода. При этом его осуществляют в расплаве, содержащем, мол.%: 55-97 CaCl2, 3-45 CaF2, с добавкой 1-22 мол.% CaO при катодной плотности тока не менее 0,1 А/см2 и анодной плотности тока не более 1 А/см2 и при температуре 700-900°С. Технический результат заключается в улучшении экологичности процесса за счет снижения прямого выделения хлора на инертном кислородвыделяющем аноде. 2 табл., 3 пр.
Способ получения сплава ni-b с дефектами структуры, используемого в качестве аккумулятора водорода // 2530230
Изобретение предназначено для получения сплава для аккумуляторов водорода и может быть использовано при производстве энергетических машин и в автомобилестроении. Способ получения сплава Ni-B с дефектами структуры, используемого в качестве аккумулятора водорода, характеризуется тем, что получают сплав Ni-B электроосаждением в электролитическом устройстве под воздействием импульсного электрического тока и затем проводят насыщение полученного сплава водородом с образованием гидридов металла в дефектах структуры сплава.