Датчик пороговых величин давлений
Сущность изобретения: датчик пороговых величин содержит чувствительный элемент в виде гибкой оболочки 1, которая выполнена с радиально-окружным гофром 2 и является фрикционным излучателем. Оболочка 1 герметично замыкает полость корпуса 3, заполненного звукопроводящей текучей средой 4 через заправочный штуцер 5. На корпусе 3 закреплен приемник колебаний 6 через опору 7. Дается математическое выражение для параметров гофра 2. При превышении внешним давлением внутреннего радиально-окружной гофр 2 теряет устойчивость и происходит развитие системы складок по куполу оболочки 1, что сопровождается акустическими колебаниями, которые фиксируются с помощью приемника 6. Подстройка давления срабатывания датчика осуществляется изменением давления внутри полости корпуса 3. 3 ил.
Изобретение относится к приборостроению и может быть использовано для сигнализации о превышении избыточного давления, в частности в качестве датчика систем аварийной защиты в промышленности.
Известны датчики пороговых величин давлений, основанные на разных физических принципах [1] Известен датчик, основанный на использовании разрушающихся элементов [2] Наиболее близким к изобретению является датчик пороговых величин давлений, содержащий чувствительный элемент в виду купольной оболочки, теряющей устойчивость, закрепленной по торцу корпуса и сообщенной с механоакустической системой, состоящей из фрикционного излучателя, подвижного относительно корпуса звуковода и приемника колебаний, имеющего акустический контакт со звуководом [3] Недостатком известного устройства является отсутствие технологической гибкости необходимость замены чувствительного элемента для подстройки порогового давления. Цель изобретения повышение технологической гибкости. Цель достигается тем, что в устройстве оболочка, герметично замыкающая полость корпуса, выполнена гибкой, по месту своего закрепления имеет радиально-окружной гофр с параметрами W= A



Е модуль Юнга;
К четное число, 4-12;
n числовая величина, 1 < n<2, а звуковод выполнен в виде звукопроводящей текучей среды, которой заполнен внутренний объем корпуса. На фиг.1 представлен общий вид датчика; на фиг.2 чувствительный элемент (гибкая оболочка); на фиг.3 схема кинематических деформаций. Датчик пороговых величин давлений содержит чувствительный элемент 1, выполненный в виде гибкой оболочки с зоной радиально-окружного гофра 2, которая герметично замыкает полость корпуса 3, заполненного звукопроводящей текучей средой 4 через штуцер 5, сообщенный с источником давления текучей среды (на чертеже не показан). На корпусе 3 закреплен приемник колебаний 6 через внешнее крепление (опору) 7. Устройство работает следующим образом. В нормальном режиме внешнее давление Ра не превышает внутреннего Рi, гибкая оболочка 1 растянута, ее радиально-окружной гофр 2 вывернут наружу и акустические эффекты, связанные с развитием системы складок, отсутствуют. В момент равенства внешнего давления Ра внутреннему Pi, сечение гибкой оболочки 1 разгружается от растягивающих усилий и оболочка 1 приобретает кинематическую подвижность. Радиально-окружной гофр 2, теряя устойчивость, проворачивается под действием избыточного давления Ра-Pi. Развитие системы складок по куполу оболочки (фиг.2 и 3) соответствует образованию полигональных форм потери устойчивости, распространяющейся на всю поверхность купола, что сопровождается акустическими явлениями типа "хлопка". Акустические колебания через звукопроводящую текучую среду 4 и стенки корпуса 3 поступают к приемнику колебаний 6, выход которого является выходом датчика. Подстройка датчика пороговых величин давлений осуществляется изменением давления Pi, источником которого может служить грузопоршневой манометр, ресивер и т.п. В качестве текучей среды 4 может использоваться вода, водные растворы солей, масла, расплавы солей, жидкие металлы. Оболочка 1 может быть изготовлена из никелевой фольги толщиной 0,01-0,08 мм, бериллиевой бронзы и других материалов. В качестве приемника колебаний 6 может быть использован пьезокерамический и другие преобразователи на частотный диапазон 40-2000 Гц.
Формула изобретения

где W отклонение от сферической поверхности;
A числовой коэффициент от 35,6 до 41,7;
[

R радиус сферической поверхности;


r опорный радиус оболочки;
E модуль Юнга;
k четное число от 4 до 12;
1 < n < 2 числовая величина,
а звуковод выполнен в виде звукопроводящей текучей среды, которой заполнен внутренний объем корпуса.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3